zoukankan      html  css  js  c++  java
  • POJ 2533 Longest Ordered Subsequence DP

    Longest Ordered Subsequence
    Time Limit: 2000MS   Memory Limit: 65536K
    Total Submissions: 32192   Accepted: 14093

    Description

    A numeric sequence of ai is ordered if a1 < a2 < ... < aN. Let the subsequence of the given numeric sequence (a1, a2, ..., aN) be any sequence (ai1, ai2, ..., aiK), where 1 <= i1 < i2 < ... < iK <= N. For example, sequence (1, 7, 3, 5, 9, 4, 8) has ordered subsequences, e. g., (1, 7), (3, 4, 8) and many others. All longest ordered subsequences are of length 4, e. g., (1, 3, 5, 8).

    Your program, when given the numeric sequence, must find the length of its longest ordered subsequence.

    Input

    The first line of input file contains the length of sequence N. The second line contains the elements of sequence - N integers in the range from 0 to 10000 each, separated by spaces. 1 <= N <= 1000

    Output

    Output file must contain a single integer - the length of the longest ordered subsequence of the given sequence.

    Sample Input

    7
    1 7 3 5 9 4 8

    Sample Output

    4
    



    #include<iostream>
    #include<cstring>
    using namespace std;
    
    
    int main()
    {
    	int n;
    	while(cin>>n)
    	{
    		int a[1005],b[1005];
    		memset(b,0,sizeof(b));
    		int i,j;
    		for(i=0;i<n;i++)
    			cin>>a[i];
    		for(i=0;i<n;i++)
    		{
    			b[i]=1;
    			for(j=0;j<i;j++)
    				if(a[j]<a[i]&&b[i]<b[j]+1)
    					b[i]++;
    		}
    		int max=0;
    		for(i=0;i<n;i++)
    			if(max<b[i])    max=b[i];
    		cout<<max<<endl;
    	}
    	return 0;
    }


  • 相关阅读:
    for 续1
    8 解决多线程对共享数据出错
    7 多线程 全局变量
    6 线程threading
    5 多进程copy文件
    4 进程间通信Queue [kjuː]
    3 进程池
    2 进程multiprocessing [mʌltɪ'prəʊsesɪŋ] time模块
    1 多任务fork Unix/Linux/Mac
    16 pep8 编码规范
  • 原文地址:https://www.cnblogs.com/zhchoutai/p/6816135.html
Copyright © 2011-2022 走看看