zoukankan      html  css  js  c++  java
  • HDU 5317 RGCDQ(素数个数 多校2015啊)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5317


    Problem Description
    Mr. Hdu is interested in Greatest Common Divisor (GCD). He wants to find more and more interesting things about GCD. Today He comes up with Range Greatest Common Divisor Query (RGCDQ). What’s RGCDQ?

    Please let me explain it to you gradually. For a positive integer x, F(x) indicates the number of kind of prime factor of x. For example F(2)=1. F(10)=2, because 10=2*5. F(12)=2, because 12=2*2*3, there are two kinds of prime factor. For each query, we will get an interval [L, R], Hdu wants to know maxGCD(F(i),F(j)) (Li<jR)

     

    Input
    There are multiple queries. In the first line of the input file there is an integer T indicates the number of queries.
    In the next T lines, each line contains L, R which is mentioned above.

    All input items are integers.
    1<= T <= 1000000
    2<=L < R<=1000000
     

    Output
    For each query。output the answer in a single line. 
    See the sample for more details.
     

    Sample Input
    2 2 3 3 5
     

    Sample Output
    1 1
     

    Source


    题意:

    一个函数 :f(x)它的值是x的素因子不同的个数;

    如:f(2) = 1, f(3) = 1。
    当中(L<=i<j<=R),即区间内随意不相等的两个数的最大公约数的最大值;

    PS:

    由于2*3*5*7*11*13*17 > 1e6!

    所以f(x)的值最大为7;

    我们先打表求出每一个f(x)的值;

    //int s[maxn][10];//前i个F中j的个数

    然后再利用前缀和s[r][i] - s[l-1][i]。

    求出区间[l, r]的值。

    代码例如以下:

    #include <cstdio>
    #include <cstring>
    #include <algorithm>
    #include <iostream>
    using namespace std;
    #define maxn 1000000+7
    int prim[maxn];
    int s[maxn][10];//前i个F中j的个数
    int GCD(int a, int b)
    {
        if(b==0)
            return a;
        return GCD(b, a%b);
    }
    void init()
    {
        memset(prim, 0, sizeof(prim));
        memset(s, 0, sizeof(s));
        for(int i = 2; i < maxn; i++)
        {
            if(prim[i]) continue;
            prim[i] = 1;
            for(int j = 2; j * i < maxn; j++)
            {
                prim[j*i]++;//不同素数个数
            }
        }
        s[2][1] = 1;
        for(int i = 3; i < maxn; i++)
        {
            for(int j = 1; j <= 7; j++)
            {
                s[i][j] = s[i-1][j];
            }
            s[i][prim[i]]++;
        }
    }
    int main()
    {
        int t;
        int l, r;
        init();
        scanf("%d",&t);
        while(t--)
        {
            scanf("%d%d",&l,&r);
            int c[17];
            int k = 0;
            for(int i  = 1; i <= 7; i++)
            {
                int tt = s[r][i] - s[l-1][i];
                if(tt >= 2)//超过两个以上记为2个就可以
                {
                    c[k++] = i;
                    c[k++] = i;
                }
                else if(tt == 1)
                {
                    c[k++] = i;
                }
            }
            int maxx = 1;
            for(int i = 0; i < k-1; i++)
            {
                for(int j = i+1; j < k; j++)
                {
                    int tt = GCD(c[i],c[j]);
                    maxx = max(maxx, tt);
                }
            }
            printf("%d
    ",maxx);
        }
        return 0;
    }
    


  • 相关阅读:
    STL
    STL
    Python编程-基础知识-条件判断
    STL
    springmvc 自定义注解
    Springboot 入口类及其实现自动配置的原理
    Java RestTemplate post请求传递参数遇到的坑
    Spring中@Autowire的底层原理解析(附详细源码阅读步骤)
    非常详细的SpringBoot-自动装配原理
    为何一个@LoadBalanced注解就能让RestTemplate拥有负载均衡的能力?
  • 原文地址:https://www.cnblogs.com/zhchoutai/p/7263383.html
Copyright © 2011-2022 走看看