zoukankan      html  css  js  c++  java
  • HDOJ 5001 Walk


    概率DP

    dp[j][d] 表示不经过i点走d步到j的概率, dp[j][d]=sigma ( dp[k][d-1] * Probability )

    ans = sigma ( dp[j][D] )

    Walk

    Time Limit: 30000/15000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
    Total Submission(s): 401    Accepted Submission(s): 261
    Special Judge


    Problem Description
    I used to think I could be anything, but now I know that I couldn't do anything. So I started traveling.

    The nation looks like a connected bidirectional graph, and I am randomly walking on it. It means when I am at node i, I will travel to an adjacent node with the same probability in the next step. I will pick up the start node randomly (each node in the graph has the same probability.), and travel for d steps, noting that I may go through some nodes multiple times.

    If I miss some sights at a node, it will make me unhappy. So I wonder for each node, what is the probability that my path doesn't contain it.
     

    Input
    The first line contains an integer T, denoting the number of the test cases.

    For each test case, the first line contains 3 integers n, m and d, denoting the number of vertices, the number of edges and the number of steps respectively. Then m lines follows, each containing two integers a and b, denoting there is an edge between node a and node b.

    T<=20, n<=50, n-1<=m<=n*(n-1)/2, 1<=d<=10000. There is no self-loops or multiple edges in the graph, and the graph is connected. The nodes are indexed from 1.
     

    Output
    For each test cases, output n lines, the i-th line containing the desired probability for the i-th node.

    Your answer will be accepted if its absolute error doesn't exceed 1e-5.
     

    Sample Input
    2 5 10 100 1 2 2 3 3 4 4 5 1 5 2 4 3 5 2 5 1 4 1 3 10 10 10 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 4 9
     

    Sample Output
    0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.6993317967 0.5864284952 0.4440860821 0.2275896991 0.4294074591 0.4851048742 0.4896018842 0.4525044250 0.3406567483 0.6421630037
     

    Source
     



    #include <iostream>
    #include <cstdio>
    #include <cstring>
    #include <algorithm>
    #include <vector>
    
    using namespace std;
    
    const int maxn=10010;
    
    int n,m,D;
    vector<int> g[maxn];
    double dp[55][maxn];
    
    int main()
    {
    	int T_T;
    	scanf("%d",&T_T);
    	while(T_T--)
    	{
    		scanf("%d%d%d",&n,&m,&D);
    		for(int i=0;i<=n+1;i++) g[i].clear();
    		while(m--)
    		{
    			int a,b;
    			scanf("%d%d",&a,&b);
    			g[a].push_back(b);
    			g[b].push_back(a);
    		}
    		for(int i=1;i<=n;i++)
    		{
    			memset(dp,0,sizeof(dp));
    			for(int j=1;j<=n;j++)
    			{
    				if(i!=j) dp[j][0]=1.0/n;
    			}
    
    			for(int d=1;d<=D;d++)
    			{
    				for(int j=1;j<=n;j++)
    				{
    					if(j==i) continue;
    					for(int k=0,sz=g[j].size();k<sz;k++)
    					{
    						int v=g[j][k];
    						if(v!=i) dp[j][d]+=dp[v][d-1]*(1./g[v].size());
    					}
    				}
    			}
    
    			double ans=0.0;
    			for(int j=1;j<=n;j++)
    			{
    				if(i!=j) ans+=dp[j][D];
    			}
    			printf("%.10lf
    ",ans);
    		}
    	}
    	return 0;
    }
    



  • 相关阅读:
    Windows Live Writer加载代码着色插件步骤
    C#中List<object>.Clear()方法和实例化new List<object>()操作的结果分析
    QT Creator引用win32 api类库方法(.lib)
    Fiddler系列教程1:初识Http协议抓包工具
    Robot Framework自动化测试框架初探
    JMeter基础教程1:若隐若现的参数化
    python异步并发模块concurrent.futures入门详解
    符合语言习惯的Python优雅编程技巧
    Python实现正交实验法自动设计测试用例
    Python Nose框架编写测试用例方法
  • 原文地址:https://www.cnblogs.com/zhchoutai/p/7399506.html
Copyright © 2011-2022 走看看