zoukankan      html  css  js  c++  java
  • 机器学习算法笔记1_2:分类和逻辑回归(Classification and Logistic regression)

    1. 形式:

      採用sigmoid函数:
      g(z)=11+ez

      其导数为g(z)=(1g(z))g(z)
      如果:

      即:

      若有m个样本,则似然函数形式是:

      对数形式:

      採用梯度上升法求其最大值
      求导:

      更新规则为:

      能够发现,则个规则形式上和LMS更新规则是一样的。然而,他们的分界函数hθ(x)却全然不同样了(逻辑回归中h(x)是非线性函数)。关于这部分内容在GLM部分解释。
      注意:若h(x)不是sigmoid函数而是阈值函数:

      这个算法称为感知学习算法。尽管得到更新准则尽管类似。但与逻辑回归全然不是一个算法了。
    2. 还有一种最大化似然函数的方法–牛顿逼近法
      • 原理:如果我们想得到一个函数的过零点f(θ)=0,能够通过一下方法不断更新θ来得到:

        其直观解释例如以下图:

        给定一个初始点θ0,如果f(θ0)和其导数同号说明过零点在初始点左边。否则在初始点右边,将初始点更新过该店的切线的过零点继续上述步骤,得到的切线过零点会不断逼近终于所要求的函数过零点。

      • 应用: 在逻辑回归中。我们要求似然函数的最大(最小)值。即似然函数导数为0。 因此能够利用牛顿逼近法:

        因为lr算法中θ是一个向量,上式改写为:

        当中H为Hessian矩阵:

        牛顿法往往比(批处理)梯度下降法更快收敛。

  • 相关阅读:
    视频输入 范例
    视频输出 范例
    开启VI视频输入设备 范例
    初始化MMP系统 范例
    Git 的使用
    DVS/DVR/NVR/XVR
    shell命令中 && 和 || 的区别
    码流 / 码率 / 比特率 / 帧速率 / 分辨率 / 高清
    DNS与DSN
    ob_start()失效与phpunit的非正常结束
  • 原文地址:https://www.cnblogs.com/zhchoutai/p/8319958.html
Copyright © 2011-2022 走看看