zoukankan      html  css  js  c++  java
  • UVA


    就是给出一个等边三角形的三个顶点坐标


    然后每一个角的三等分线会交错成一个三角形,求出这个三角形的顶点坐标


    一開始。我题意理解错了……还以为是随意三角形,所以代码可以处理随意三角形的情况


    我的做法:


    通过旋转点的位置得到这些三等分线的直线方程,然后用高斯消元求交点


    我的代码:

    #include<iostream>
    #include<map>
    #include<string>
    #include<cstring>
    #include<cstdio>
    #include<cstdlib>
    #include<cmath>
    #include<queue>
    #include<vector>
    #include<algorithm>
    using namespace std;
    struct dot
    {
    	double x,y;
    	dot(){}
    	dot(double a,double b){x=a;y=b;}
    	dot operator -(const dot &a){return dot(x-a.x,y-a.y);}
    	dot operator +(const dot &a){return dot(x+a.x,y+a.y);}
    	double mod(){return sqrt(pow(x,2)+pow(y,2));}
    	double mul(const dot &a){return x*a.x+y*a.y;}
    };
    void gauss(double a[10][10])
    {
    	int i,j,k,t,n=2;
    	for(i=0;i<n;i++)
    	{
    		t=i;
    		for(j=i+1;j<n;j++)
    			if(fabs(a[j][i])>fabs(a[t][i]))
    				t=i;
    		if(i!=t)
    			for(j=i;j<=n;j++)
    				swap(a[i][j],a[t][j]);
    		if(a[i][i]!=0)
    			for(j=i+1;j<n;j++)
    				for(k=n;k>=i;k--)
    					a[j][k]-=a[j][i]/a[i][i]*a[i][k];
    	}
    	for(i=n-1;i>-1;i--)
    	{
    		for(j=i+1;j<n;j++)
    			a[i][n]-=a[i][j]*a[j][n];
    		a[i][n]/=a[i][i];
    	}
    }
    dot ro(dot a,dot b,double c)
    {
    	a=a-b;
    	a=dot(a.x*cos(c)-a.y*sin(c),a.x*sin(c)+a.y*cos(c));
    	return a+b;
    }
    int main()
    {
    	pair<dot,dot>t;
    	dot a[3];
    	double b,c[10][10];
    	int n,i;
    	cin>>n;
    	while(n--)
    	{
    		for(i=0;i<3;i++)
    			scanf("%lf%lf",&a[i].x,&a[i].y);
    		
    		t.first=a[0]-a[1];t.second=a[2]-a[1];
    		b=acos(t.first.mul(t.second)/t.first.mod()/t.second.mod())/3;
    		t.first=a[1];t.second=ro(a[2],a[1],b);
    		c[0][0]=t.first.y-t.second.y;c[0][1]=t.second.x-t.first.x;c[0][2]=t.second.x*t.first.y-t.second.y*t.first.x;
    		
    		t.first=a[1]-a[2];t.second=a[0]-a[2];
    		b=2*acos(t.first.mul(t.second)/t.first.mod()/t.second.mod())/3;
    		t.first=a[2];t.second=ro(a[0],a[2],b);
    		c[1][0]=t.first.y-t.second.y;c[1][1]=t.second.x-t.first.x;c[1][2]=t.second.x*t.first.y-t.second.y*t.first.x;
    	
    		gauss(c);
    		
    		printf("%.6lf %.6lf ",c[0][2],c[1][2]);
    		
    		t.first=a[1]-a[2];t.second=a[0]-a[2];
    		b=acos(t.first.mul(t.second)/t.first.mod()/t.second.mod())/3;
    		t.first=a[2];t.second=ro(a[0],a[2],b);
    		c[0][0]=t.first.y-t.second.y;c[0][1]=t.second.x-t.first.x;c[0][2]=t.second.x*t.first.y-t.second.y*t.first.x;
    		
    		t.first=a[1]-a[0];t.second=a[2]-a[0];
    		b=2*acos(t.first.mul(t.second)/t.first.mod()/t.second.mod())/3;
    		t.first=a[0];t.second=ro(a[1],a[0],b);
    		c[1][0]=t.first.y-t.second.y;c[1][1]=t.second.x-t.first.x;c[1][2]=t.second.x*t.first.y-t.second.y*t.first.x;
    	
    		gauss(c);
    		
    		printf("%.6lf %.6lf ",c[0][2],c[1][2]);
    		
    		t.first=a[1]-a[0];t.second=a[2]-a[0];
    		b=acos(t.first.mul(t.second)/t.first.mod()/t.second.mod())/3;
    		t.first=a[0];t.second=ro(a[1],a[0],b);
    		c[0][0]=t.first.y-t.second.y;c[0][1]=t.second.x-t.first.x;c[0][2]=t.second.x*t.first.y-t.second.y*t.first.x;
    		
    		t.first=a[0]-a[1];t.second=a[2]-a[1];
    		b=2*acos(t.first.mul(t.second)/t.first.mod()/t.second.mod())/3;
    		t.first=a[1];t.second=ro(a[2],a[1],b);
    		c[1][0]=t.first.y-t.second.y;c[1][1]=t.second.x-t.first.x;c[1][2]=t.second.x*t.first.y-t.second.y*t.first.x;
    	
    		gauss(c);
    		
    		printf("%.6lf %.6lf
    ",c[0][2],c[1][2]);
    	}
    }
    原题:

    Problem D
    Morley’s Theorem
    Input:
    Standard Input

    Output: Standard Output

     Morley’s theorem states that that the lines trisecting the angles of an arbitrary plane triangle meet at the vertices of an equilateral triangle. For example in the figure below the tri-sectors of angles A, B and C has intersected and created an equilateral triangle DEF.

     

    Of course the theorem has various generalizations, in particular if all of the tri-sectors are intersected one obtains four other equilateral triangles. But in the original theorem only tri-sectors nearest to BC are allowed to intersect to get point D, tri-sectors nearest to CA are allowed to intersect point E and tri-sectors nearest to AB are intersected to get point F. Trisector like BD and CE are not allowed to intersect. So ultimately we get only one equilateral triangle DEF. Now your task is to find the Cartesian coordinates of D, E and F given the coordinates of A, B, and C.

     

    Input

    First line of the input file contains an integer N (0<N<5001) which denotes the number of test cases to follow. Each of the next lines contain six integers . This six integers actually indicates that the Cartesian coordinates of point A, B and C are  respectively. You can assume that the area of triangle ABC is not equal to zero,  and the points A, B and C are in counter clockwise order.

     

    Output

    For each line of input you should produce one line of output. This line contains six floating point numbers  separated by a single space. These six floating-point actually means that the Cartesian coordinates of D, E and F are  respectively. Errors less than   will be accepted.

     

    Sample Input   Output for Sample Input

    2 
    1 1 2 2 1 2 
    0 0 100 0 50 50

    1.316987 1.816987 1.183013 1.683013 1.366025 1.633975

    56.698730 25.000000 43.301270 25.000000 50.000000 13.397460

                      

    Problemsetters: Shahriar Manzoor

    Special Thanks: Joachim Wulff

     

    Source

    Root :: Prominent Problemsetters :: Shahriar Manzoor

    Root :: AOAPC I: Beginning Algorithm Contests -- Training Guide (Rujia Liu) :: Chapter 4. Geometry :: Geometric Computations in 2D :: Examples

  • 相关阅读:
    Android 生命周期
    struts标签,<s:textfield>嵌套<s:property>的问题
    设置input 内容居中显示 .
    Jquery实现遮罩层,就是弹出DIV周围都灰色不能操作
    如何用Jquery实现 ,比如点击图片之后 ,该图片变成向下的箭头,再点击向下箭头的图片 又变成原始图片呢
    html制作,点击文字超链接显示文本框,再点击文字超链接隐藏文本框
    hibernate mysql视图操作
    Java 日期时间 Date类型,long类型,String类型表现形式的转换
    Spring启动异常: cvc-elt.1: Cannot find the declaration of element 'beans'(转)
    解决不联网无法启动struts2问题
  • 原文地址:https://www.cnblogs.com/zhchoutai/p/8607455.html
Copyright © 2011-2022 走看看