LeetCode 396. Rotate Function
一道数学题。
题目描述
Given an array of integers A and let n to be its length.
Assume Bk to be an array obtained by rotating the array A k positions clock-wise, we define a "rotation function" F on A as follow:
F(k) = 0 * Bk[0] + 1 * Bk[1] + ... + (n-1) * Bk[n-1].
Calculate the maximum value of F(0), F(1), ..., F(n-1).
Note:
n is guaranteed to be less than 105.
Example:
A = [4, 3, 2, 6]
F(0) = (0 * 4) + (1 * 3) + (2 * 2) + (3 * 6) = 0 + 3 + 4 + 18 = 25
F(1) = (0 * 6) + (1 * 4) + (2 * 3) + (3 * 2) = 0 + 4 + 6 + 6 = 16
F(2) = (0 * 2) + (1 * 6) + (2 * 4) + (3 * 3) = 0 + 6 + 8 + 9 = 23
F(3) = (0 * 3) + (1 * 2) + (2 * 6) + (3 * 4) = 0 + 2 + 12 + 12 = 26So the maximum value of F(0), F(1), F(2), F(3) is F(3) = 26.
解题思路
暴力做法 O(N^2) 是会超时的。注意观察给的例子,发现 F(k) 和 F(k-1) 之间存在相关关系,不用每次重新计算:
F(k) = F(k-1) + sum(A) - n * A[n - k]
由此,问题复杂度一下子降到了 O(N)。
发现递推关系,问题就简单了起来。
参考代码
要小心int类型溢出的问题。
/*
* @lc app=leetcode id=396 lang=cpp
*
* [396] Rotate Function
*/
// @lc code=start
class Solution {
public:
/*
int maxRotateFunction(vector<int>& A) {
if (A.empty()) return 0;
int res = INT32_MIN;
int n = A.size();
for (int k = 0; k < n; k++) {
int F = 0;
for (int i = 0; i < n; i++) {
F += ((i + k) % n) * A[i];
}
res = max(res, F);
}
return res;
} // TLE, brute force, O(N^2)
*/
int maxRotateFunction(vector<int>& A) {
if (A.empty()) return 0;
size_t n = A.size();
int64_t sum = 0; // avoid overflow
for (int x : A) {
sum += x;
}
int F0 = 0;
for (int i = 0; i < n; i++) {
F0 += i * A[i];
}
int res = F0;
int64_t F = F0; // avoid overflow
for (int k = 1; k < n; k++) {
F = F + sum - n * A[n - k];
res = max(res, (int)F);
}
return res;
}
};
// @lc code=end