zoukankan      html  css  js  c++  java
  • Keras猫狗大战六:用resnet50预训练模型进行迁移学习,精度提高到95.3%

    前面用一个简单的4层卷积网络,以猫狗共25000张图片作为训练数据,经过100 epochs的训练,最终得到的准确度为90%。

    深度学习中有一种重要的学习方法是迁移学习,可以在现有训练好的模型基础上针对具体的问题进行学习训练,简化学习过程。

    这里以imagenet的resnet50模型进行迁移学习训练猫狗分类模型。

    import os
    
    from keras import layers, optimizers, models
    from keras.applications.resnet50 import ResNet50
    from keras.layers import *    
    from keras.models import Model

    定义数据目录

    src_path = r'D:BaiduNetdiskDownload	rain'
    dst_path = r'D:BaiduNetdiskDownloadlarge'
    train_dir = os.path.join(dst_path, 'train')
    validation_dir = os.path.join(dst_path, 'valid')
    test_dir = os.path.join(dst_path, 'test')
    
    class_name = ['cat', 'dog']

    定义网络:

    conv_base = ResNet50(weights='imagenet', include_top=False, input_shape=(150, 150, 3))
    
    model = models.Sequential()
    model.add(conv_base)
    model.add(layers.Flatten())
    model.add(layers.Dense(1, activation='sigmoid'))
    
    conv_base.trainable = False
    
    model.compile(loss='binary_crossentropy', optimizer=optimizers.RMSprop(lr=1e-4), metrics=['acc'])
    model.summary()
    _________________________________________________________________
    Layer (type)                 Output Shape              Param #   
    =================================================================
    resnet50 (Model)             (None, 5, 5, 2048)        23587712  
    _________________________________________________________________
    flatten_1 (Flatten)          (None, 51200)             0         
    _________________________________________________________________
    dense_1 (Dense)              (None, 1)                 51201     
    =================================================================
    Total params: 23,638,913
    Trainable params: 51,201
    Non-trainable params: 23,587,712
    _________________________________________________________________

    定义数据:
    from keras.preprocessing.image import ImageDataGenerator
    
    batch_size = 64
    
    train_datagen = ImageDataGenerator(
        rotation_range=40,
        width_shift_range=0.2,
        height_shift_range=0.2,
        shear_range=0.2,
        zoom_range=0.2,
        horizontal_flip=True, )
    
    test_datagen = ImageDataGenerator()
    
    
    train_generator = train_datagen.flow_from_directory(
            # This is the target directory
            train_dir,
            # All images will be resized to 150x150
            target_size=(150, 150),
            batch_size=batch_size,
            # Since we use binary_crossentropy loss, we need binary labels
            class_mode='binary')
    
    validation_generator = test_datagen.flow_from_directory(
            validation_dir,
            target_size=(150, 150),
            batch_size=batch_size,
            class_mode='binary')

    训练:

    history = model.fit_generator(
          train_generator,
          steps_per_epoch=train_generator.samples//batch_size,
          epochs=20,
          validation_data=validation_generator,
          validation_steps=validation_generator.samples//batch_size)

    训练过程:

    Epoch 1/20
    281/281 [==============================] - 155s 550ms/step - loss: 0.3354 - acc: 0.8644 - val_loss: 0.2028 - val_acc: 0.9433
    Epoch 2/20
    281/281 [==============================] - 79s 282ms/step - loss: 0.2502 - acc: 0.9008 - val_loss: 0.2067 - val_acc: 0.9432
    Epoch 3/20
    281/281 [==============================] - 79s 280ms/step - loss: 0.2318 - acc: 0.9125 - val_loss: 0.1934 - val_acc: 0.9484
    Epoch 4/20
    281/281 [==============================] - 79s 282ms/step - loss: 0.2179 - acc: 0.9147 - val_loss: 0.2026 - val_acc: 0.9459
    ......
    281/281 [==============================] - 82s 292ms/step - loss: 0.1747 - acc: 0.9332 - val_loss: 0.2202 - val_acc: 0.9452
    Epoch 16/20
    281/281 [==============================] - 79s 283ms/step - loss: 0.1829 - acc: 0.9329 - val_loss: 0.2256 - val_acc: 0.9513
    Epoch 17/20
    281/281 [==============================] - 79s 280ms/step - loss: 0.1811 - acc: 0.9322 - val_loss: 0.2079 - val_acc: 0.9466
    Epoch 18/20
    281/281 [==============================] - 81s 288ms/step - loss: 0.1731 - acc: 0.9345 - val_loss: 0.2149 - val_acc: 0.9466
    Epoch 19/20
    281/281 [==============================] - 81s 289ms/step - loss: 0.1735 - acc: 0.9346 - val_loss: 0.2038 - val_acc: 0.9504
    Epoch 20/20
    281/281 [==============================] - 82s 291ms/step - loss: 0.1723 - acc: 0.9347 - val_loss: 0.2228 - val_acc: 0.9463

    训练曲线:

         

     可以看到在第3轮的时候,就得到最佳模型。

    测试结果:

    test_generator = test_datagen.flow_from_directory(
        test_dir,
        target_size=(150, 150),
        batch_size=batch_size,
        class_mode='binary')
    
    test_loss, test_acc = model.evaluate_generator(test_generator, steps=test_generator.samples // batch_size)
    print('test acc:', test_acc)
    Found 2500 images belonging to 2 classes.
    test acc: 0.9536 

    可以看到迁移学习可以利用已有训练好的模型,进行特征提取,大大加快训练过程,提高模型精度。
  • 相关阅读:
    python之os模块
    python之字符串
    python之爬虫(beautifulsoup)
    python之常见算法
    python之装饰器(类装饰器,函数装饰器)
    python之mock使用,基于unittest
    python之定时器
    python基础语法随记
    redis基础
    移动端页面开发(二)
  • 原文地址:https://www.cnblogs.com/zhengbiqing/p/11780161.html
Copyright © 2011-2022 走看看