zoukankan      html  css  js  c++  java
  • 二分图中及匹配的基本概念与定理

    定义:设G是一个图。如果存在VG的一个划分X,Y,使得G的任何一条边的一个端点在X中,另一个端点在Y中,则称G为二分图,记作G=(X,Y,E)。如果G中X的每个顶点都与Y的每个顶点相邻,则称G为完全二分图

     

    二分图的匹配:给定一个二分图G,M为G边集的一个子集,如果M满足当中的任意两条边都不依附于同一个顶点,则称M是       一个匹配。

    最小顶点覆盖:在二分图中寻找一个尽量小的点集,使图中每一条边至少有一个点在该点集中。

    最小顶点覆盖 == 最大匹配。

      反证法证明:假设当前存在一条两个端点都不在最小顶点覆盖点集中,那么这么光芒四射的边定可以增大最大匹配边集,与最大匹配矛盾,所以得证。

    最小路径覆盖:在二分图中寻找一个尽量小的边集,使图中每一个点都是该边集中某条边的端点。

    最小路径覆盖 == 点数 - 最大匹配。

      证明:因为一条边最多可以包含两个顶点,所以我们选边的时候让这样的边尽量多,也就是说最大匹配的边集数目咯。剩下的点就只能一个边连上一个点到集合里啦。

    最大独立集:在N个点中选出来一个最大点集,使这个点集中的任意两点之间都没有边。

    最大独立集 == 顶点数 - 最大匹配。

      证明:因为去掉最大匹配两端的顶点去掉以后,剩下的点肯定是独立集。我们再从每个匹配里面挑选出来一个点加入到独立集中,也是不会破坏原有独立集的独立性的。

    增广路径的性质:
    (1)有奇数条边。
    (2)起点在二分图的左半边,终点在右半边。
    (3)路径上的点一定是一个在左半边,一个在右半边,交替出现。(其实二分图的性质就决定了这一点,因为二分图同一边的点之间没有边相连,不要忘记哦。)
    (4)整条路径上没有重复的点。
    (5)起点和终点都是目前还没有配对的点,而其它所有点都是已经配好对的。
  • 相关阅读:
    python,生产环境安装
    neo4j 图数据库
    RNN系列
    机器学习关于AUC的理解整理
    fensorflow 安装报错 DEPENDENCY ERROR
    dubbo Failed to check the status of the service com.user.service.UserService. No provider available for the service
    使用hbase遇到的问题
    MISCONF Redis is configured to save RDB snapshots, but is currently not able to persist on disk
    gradle 安装
    jenkins 安装遇到的坑
  • 原文地址:https://www.cnblogs.com/zhengguiping--9876/p/5663501.html
Copyright © 2011-2022 走看看