zoukankan      html  css  js  c++  java
  • LightOj 1289

    题目链接:http://lightoj.com/volume_showproblem.php?problem=1289

    题意:求LCM(1, 2, 3, ... , n)%(1<<32), (1<n<=1e8);

    LCM(1, 2, 3, ... , n) = n以内所有素数的最高次幂之积,例如15: 23*32*5*7*11*13 = 36360360;

    为了防止TLE所以,要有一个数组表示前缀积,但是直接开LL会MLE是,因为有个%1<<32刚好是unsigned int之内,可以开int的数组;

    关于求1e8内的素数表,用bool类型也会MLE的,所以可以使用bitset类型;

    #include <stdio.h>
    #include <string.h>
    #include <math.h>
    #include <algorithm>
    #include <bitset>
    #include <iostream>
    #include <time.h>
    
    typedef long long LL;
    
    using namespace std;
    
    const int N = 1e8+1;
    const double eps = 1e-10;
    const int INF = 0x3f3f3f3f;
    const LL mod = (1ll<<32);
    
    int k, p[6000005];
    unsigned int  Mul[6000005];
    bitset<N> f;
    
    void Init()
    {
        f.reset();
        for(int i=2; i<N; i++)
        {
            if(f[i]) continue;
            p[k++] = i;
            for(int j=i+i; j<N; j+=i)
                f[j] = 1;
        }
    }
    
    int main()
    {
        int T, t = 1;
        scanf("%d", &T);
    
        Init();
    
        Mul[0] = p[0];
        for(int i=1; i<k; i++)
            Mul[i] = Mul[i-1]*p[i];
    
        while(T --)
        {
            int n;
    
            scanf("%d", &n);
    
            int pos = upper_bound(p, p+k, n)-p - 1;
    
            LL ans = Mul[pos];
    
            for(int i=0; i<k && (LL)p[i]*p[i]<=n; i++)
            {
                LL num = 1;
                while(num <= n)
                    num *= p[i];
                if(num%(p[i]*p[i]) == 0) num /= (p[i]*p[i]);
                ans = ans*num%mod;
            }
    
            printf("Case %d: %lld
    ", t++, ans);
        }
        return 0;
    }
    View Code

    还有一种比较快一点的方法:

    #include <stdio.h>
    #include <string.h>
    #include <math.h>
    #include <algorithm>
    #include <bitset>
    #include <iostream>
    #include <time.h>
    
    typedef long long LL;
    
    using namespace std;
    
    const int N = 1e8+1;
    const double eps = 1e-10;
    const int INF = 0x3f3f3f3f;
    const LL mod = (1ll<<32);
    
    int k = 0, p[6000005], f[N/32+5];
    unsigned int  Mul[6000005];
    
    void Init()
    {
        p[k++] = 2;
        for(int i=3; i<N; i+=2)
        {
            if(f[i/32]&(1<<((i/2)%16)))
                continue;
            p[k++] = i;
            for(int j=3*i; j<N; j+=2*i)
                f[j/32] |= (1<<((j/2)%16));
        }
        ///printf("%d
    ", k);
    }
    
    int main()
    {
        int T, t = 1;
        scanf("%d", &T);
    
        Init();
    
        Mul[0] = p[0];
        for(int i=1; i<k; i++)
            Mul[i] = Mul[i-1]*p[i];
    
        while(T --)
        {
            int n;
    
            scanf("%d", &n);
    
            int pos = upper_bound(p, p+k, n)-p - 1;
    
            LL ans = Mul[pos];
    
            for(int i=0; i<k && (LL)p[i]*p[i]<=n; i++)
            {
                LL num = 1;
                while(num <= n)
                    num *= p[i];
                if(num%(p[i]*p[i]) == 0) num /= (p[i]*p[i]);
                ans = ans*num%mod;
            }
    
            printf("Case %d: %lld
    ", t++, ans);
        }
        return 0;
    }
    View Code
  • 相关阅读:
    Asp.Net.Core 系列-中间件和依赖注入Hosting篇
    Asp.Net.Core 系列-中间件和依赖注入进阶篇
    Asp.Net.Core 系列-中间件和依赖注入基础篇
    修饰符总结
    CSS3边框border知识点
    浅谈CSS中的居中
    c#中的委托和事件
    c#基础知识复习-static
    c#基础知识复习
    Bfc的理解
  • 原文地址:https://www.cnblogs.com/zhengguiping--9876/p/6030583.html
Copyright © 2011-2022 走看看