这个题的方法好像很多啊
1.莫队暴力
2.线段树 + 离线处理
先预处理出sg[i]表示前i个数的sg值,next[i]表示i的下一位置在哪里,如果后面再没有i,那么next[i] = n + 1
然后把线段树的每个叶子节点放上sg[i]。
把询问按照左端点由小到大排序,我们考虑如何从 l ~ r 转移到 l + 1 ~ r,
会发现,当把a[l]这个数去掉之后,如果后面没有a[l]那么答案就可能会更新,
那么我们可以更新 l + 1 ~ next[l] - 1这个区间,也就是用线段树操作
#include <cstdio> #include <iostream> #include <algorithm> #define N 200001 #define INF ~(1 << 31) #define root 1, 1, n #define ls now << 1, l, mid #define rs now << 1 | 1, mid + 1, r #define min(x, y) ((x) < (y) ? (x) : (y)) int n, q; int a[N], next[N], vis[N], ans[N], mx[N << 2], sg[N]; struct node { int x, y, id; }p[N]; inline int read() { int x = 0, f = 1; char ch = getchar(); for(; !isdigit(ch); ch = getchar()) if(ch == '-') f = -1; for(; isdigit(ch); ch = getchar()) x = (x << 1) + (x << 3) + ch - '0'; return x * f; } inline bool cmp(node x, node y) { return x.x < y.x; } inline void build(int now, int l, int r) { if(l == r) { mx[now] = sg[l]; return; } mx[now] = INF; int mid = (l + r) >> 1; build(ls); build(rs); } inline void push_down(int now) { if(mx[now] != INF) { mx[now << 1] = min(mx[now << 1], mx[now]); mx[now << 1 | 1] = min(mx[now << 1 | 1], mx[now]); mx[now] = INF; } } inline void update(int now, int l, int r, int x, int y, int d) { if(x <= l && r <= y) { mx[now] = min(mx[now], d); return; } push_down(now); int mid = (l + r) >> 1; if(x <= mid) update(ls, x, y, d); if(mid < y) update(rs, x, y, d); } inline int query(int now, int l, int r, int x) { if(l == r) return mx[now]; push_down(now); int mid = (l + r) >> 1; if(x <= mid) return query(ls, x); else return query(rs, x); } int main() { int i, j = 0, now = 1, nxt; n = read(); q = read(); for(i = 1; i <= n; i++) a[i] = read(); for(i = 1; i <= n; i++) { vis[a[i]] = 1; while(vis[j]) j++; sg[i] = j; } build(root); for(i = 0; i <= n; i++) vis[i] = n + 1; for(i = n; i >= 1; i--) next[i] = vis[a[i]], vis[a[i]] = i; for(i = 1; i <= q; i++) { p[i].id = i; p[i].x = read(); p[i].y = read(); } std::sort(p + 1, p + q + 1, cmp); for(i = 1; i <= q; i++) { while(now < p[i].x) { if(now + 1 < next[now]) update(root, now + 1, next[now] - 1, a[now]); now++; } ans[p[i].id] = query(root, p[i].y); } for(i = 1; i <= q; i++) printf("%d ", ans[i]); return 0; }
3.主席树
。。不会