显然树上第k大直接主席树
如果连边的话,我们重构小的那一棵,连到另一棵上。
说起来简单,调了我一晚上。
总的来说3个错误:
1.离散化写错位置写到了后面
2."="写成了"=="
3.加双向边时加成了单向边
3个错误3个小时。。。
#include <cstdio> #include <cstring> #include <iostream> #include <algorithm> #define N 80011 #define M 10000000 using namespace std; int n, m, T, cnt, tot, test, last; int head[N], to[N << 2], nex[N << 2], val[N], ntr[N], deep[N], f[N][21], root[N], sum[M], ls[M], rs[M], fa[N], size[N]; bool vis[N]; inline int read() { int x = 0, f = 1; char ch = getchar(); for(; !isdigit(ch); ch = getchar()) if(ch == '-') f = -1; for(; isdigit(ch); ch = getchar()) x = (x << 1) + (x << 3) + ch - '0'; return x * f; } inline void add(int x, int y) { to[cnt] = y; nex[cnt] = head[x]; head[x] = cnt++; } inline int find(int x) { return x == fa[x] ? x : fa[x] = find(fa[x]); } inline void Union(int x, int y) { int fx = find(x), fy = find(y); if(fx != fy) fa[fx] = fy, size[fy] += size[fx]; } inline int query(int a, int b, int c, int d, int l, int r, int x) { if(l == r) return l; int mid = (l + r) >> 1; if(sum[ls[a]] + sum[ls[b]] - sum[ls[c]] - sum[ls[d]] >= x) return query(ls[a], ls[b], ls[c], ls[d], l, mid, x); else return query(rs[a], rs[b], rs[c], rs[d], mid + 1, r, x - (sum[ls[a]] + sum[ls[b]] - sum[ls[c]] - sum[ls[d]])); } inline void insert(int &now, int last, int l, int r, int x) { now = ++tot; ls[now] = ls[last]; rs[now] = rs[last]; sum[now] = sum[last] + 1; if(l == r) return; int mid = (l + r) >> 1; if(x <= mid) insert(ls[now], ls[last], l, mid, x); else insert(rs[now], rs[last], mid + 1, r, x); } inline void dfs(int u) { int i, v; vis[u] = 1; deep[u] = deep[f[u][0]] + 1; insert(root[u], root[f[u][0]], 1, m, val[u]); for(i = 0; f[u][i]; i++) f[u][i + 1] = f[f[u][i]][i]; for(; i <= 20; i++) f[u][i] = 0; for(i = head[u]; ~i; i = nex[i]) { v = to[i]; if(!vis[v]) { f[v][0] = u; dfs(v); } } vis[u] = 0; } inline int lca(int x, int y) { int i; if(deep[x] < deep[y]) swap(x, y); for(i = 20; i >= 0; i--) if(deep[f[x][i]] >= deep[y]) x = f[x][i]; if(x == y) return x; for(i = 20; i >= 0; i--) if(f[x][i] != f[y][i]) x = f[x][i], y = f[y][i]; return f[x][0]; } int main() { char s[10]; int i, x, y, k, fx, fy; test = read(); n = read(); m = read(); T = read(); memset(head, -1, sizeof(head)); for(i = 1; i <= n; i++) { fa[i] = i, size[i] = 1; val[i] = ntr[i] = read(); } for(i = 1; i <= m; i++) { x = read(); y = read(); add(x, y); add(y, x); Union(x, y); } sort(ntr + 1, ntr + n + 1); m = unique(ntr + 1, ntr + n + 1) - ntr - 1; for(i = 1; i <= n; i++) val[i] = lower_bound(ntr + 1, ntr + m + 1, val[i]) - ntr; for(i = 1; i <= n; i++) if(!deep[i]) dfs(i); while(T--) { scanf("%s", s); x = read() ^ last; y = read() ^ last; if(s[0] == 'Q') { k = read() ^ last; printf("%d ", last = ntr[query(root[x], root[y], root[lca(x, y)], root[f[lca(x, y)][0]], 1, m, k)]); } else { fx = find(x), fy = find(y); if(size[fx] > size[fy]) swap(x, y); Union(x, y); f[x][0] = y; dfs(x); add(x, y); add(y, x); } } return 0; }