显然树上第k大直接主席树
如果连边的话,我们重构小的那一棵,连到另一棵上。
说起来简单,调了我一晚上。
总的来说3个错误:
1.离散化写错位置写到了后面
2."="写成了"=="
3.加双向边时加成了单向边
3个错误3个小时。。。
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#define N 80011
#define M 10000000
using namespace std;
int n, m, T, cnt, tot, test, last;
int head[N], to[N << 2], nex[N << 2], val[N], ntr[N], deep[N], f[N][21], root[N], sum[M], ls[M], rs[M], fa[N], size[N];
bool vis[N];
inline int read()
{
int x = 0, f = 1;
char ch = getchar();
for(; !isdigit(ch); ch = getchar()) if(ch == '-') f = -1;
for(; isdigit(ch); ch = getchar()) x = (x << 1) + (x << 3) + ch - '0';
return x * f;
}
inline void add(int x, int y)
{
to[cnt] = y;
nex[cnt] = head[x];
head[x] = cnt++;
}
inline int find(int x)
{
return x == fa[x] ? x : fa[x] = find(fa[x]);
}
inline void Union(int x, int y)
{
int fx = find(x), fy = find(y);
if(fx != fy) fa[fx] = fy, size[fy] += size[fx];
}
inline int query(int a, int b, int c, int d, int l, int r, int x)
{
if(l == r) return l;
int mid = (l + r) >> 1;
if(sum[ls[a]] + sum[ls[b]] - sum[ls[c]] - sum[ls[d]] >= x) return query(ls[a], ls[b], ls[c], ls[d], l, mid, x);
else return query(rs[a], rs[b], rs[c], rs[d], mid + 1, r, x - (sum[ls[a]] + sum[ls[b]] - sum[ls[c]] - sum[ls[d]]));
}
inline void insert(int &now, int last, int l, int r, int x)
{
now = ++tot;
ls[now] = ls[last];
rs[now] = rs[last];
sum[now] = sum[last] + 1;
if(l == r) return;
int mid = (l + r) >> 1;
if(x <= mid) insert(ls[now], ls[last], l, mid, x);
else insert(rs[now], rs[last], mid + 1, r, x);
}
inline void dfs(int u)
{
int i, v;
vis[u] = 1;
deep[u] = deep[f[u][0]] + 1;
insert(root[u], root[f[u][0]], 1, m, val[u]);
for(i = 0; f[u][i]; i++) f[u][i + 1] = f[f[u][i]][i];
for(; i <= 20; i++) f[u][i] = 0;
for(i = head[u]; ~i; i = nex[i])
{
v = to[i];
if(!vis[v])
{
f[v][0] = u;
dfs(v);
}
}
vis[u] = 0;
}
inline int lca(int x, int y)
{
int i;
if(deep[x] < deep[y]) swap(x, y);
for(i = 20; i >= 0; i--)
if(deep[f[x][i]] >= deep[y]) x = f[x][i];
if(x == y) return x;
for(i = 20; i >= 0; i--)
if(f[x][i] != f[y][i]) x = f[x][i], y = f[y][i];
return f[x][0];
}
int main()
{
char s[10];
int i, x, y, k, fx, fy;
test = read();
n = read();
m = read();
T = read();
memset(head, -1, sizeof(head));
for(i = 1; i <= n; i++)
{
fa[i] = i, size[i] = 1;
val[i] = ntr[i] = read();
}
for(i = 1; i <= m; i++)
{
x = read();
y = read();
add(x, y);
add(y, x);
Union(x, y);
}
sort(ntr + 1, ntr + n + 1);
m = unique(ntr + 1, ntr + n + 1) - ntr - 1;
for(i = 1; i <= n; i++) val[i] = lower_bound(ntr + 1, ntr + m + 1, val[i]) - ntr;
for(i = 1; i <= n; i++)
if(!deep[i]) dfs(i);
while(T--)
{
scanf("%s", s);
x = read() ^ last;
y = read() ^ last;
if(s[0] == 'Q')
{
k = read() ^ last;
printf("%d
", last = ntr[query(root[x], root[y], root[lca(x, y)], root[f[lca(x, y)][0]], 1, m, k)]);
}
else
{
fx = find(x), fy = find(y);
if(size[fx] > size[fy]) swap(x, y);
Union(x, y);
f[x][0] = y;
dfs(x);
add(x, y);
add(y, x);
}
}
return 0;
}