zoukankan      html  css  js  c++  java
  • 使用ganglia监控hadoop及hbase集群

    一、Ganglia简介

    Ganglia 是 UC Berkeley 发起的一个开源监视项目,设计用于测量数以千计的节点。每台计算机都运行一个收集和发送度量数据(如处理器速度、内存使用量等)的名为 gmond 的守护进程。它将从操作系统和指定主机中收集。接收所有度量数据的主机可以显示这些数据并且可以将这些数据的精简表单传递到层次结构中。正因为有这种层次结构模式,才使得 Ganglia 可以实现良好的扩展。gmond 带来的系统负载非常少,这使得它成为在集群中各台计算机上运行的一段代码,而不会影响用户性能

    1.1 Ganglia组件

    Ganglia 监控套件包括三个主要部分:gmond,gmetad,和网页接口,通常被称为ganglia-web。

    Gmond :是一个守护进程,他运行在每一个需要监测的节点上,收集监测统计,发送和接受在同一个组播或单播通道上的统计信息 如果他是一个发送者(mute=no)他会收集基本指标,比如系统负载(load_one),CPU利用率。他同时也会发送用户通过添加C/Python模块来自定义的指标。 如果他是一个接收者(deaf=no)他会聚合所有从别的主机上发来的指标,并把它们都保存在内存缓冲区中。

    Gmetad:也是一个守护进程,他定期检查gmonds,从那里拉取数据,并将他们的指标存储在RRD存储引擎中。他可以查询多个集群并聚合指标。他也被用于生成用户界面的web前端。

    Ganglia-web :顾名思义,他应该安装在有gmetad运行的机器上,以便读取RRD文件。 集群是主机和度量数据的逻辑分组,比如数据库服务器,网页服务器,生产,测试,QA等,他们都是完全分开的,你需要为每个集群运行单独的gmond实例。

    一般来说每个集群需要一个接收的gmond,每个网站需要一个gmetad。

     

    图1 ganglia工作流

    Ganglia工作流如图1所示:

    左边是运行在各个节点上的gmond进程,这个进程的配置只由节点上/etc/gmond.conf的文件决定。所以,在各个监视节点上都需要安装和配置该文件。

    右上角是更加负责的中心机(通常是这个集群中的一台,也可以不是)。在这个台机器上运行这着gmetad进程,收集来自各个节点上的信息并存储在RRDtool上,该进程的配置只由/etc/gmetad.conf决定。   

    右下角显示了关于网页方面的一些信息。我们的浏览网站时调用php脚本,从RRDTool数据库中抓取信息,动态的生成各类图表。

    1.2 Ganglia运行模式(单播与多播)  

    Ganglia的收集数据工作可以工作在单播(unicast)或多播(multicast)模式下,默认为多播模式。

    单播:发送自己收集到的监控数据到特定的一台或几台机器上,可以跨网段。

    多播:发送自己收集到的监控数据到同一网段内所有的机器上,同时收集同一网段内的所有机器发送过来的监控数据。因为是以广播包的形式发送,因此需要同一网段内。但同一网段内,又可以定义不同的发送通道。

     

    二、安装ganglia

    1、拓扑说明
    3台主机,分别为:

    [plain] view plaincopy在CODE上查看代码片派生到我的代码片
     
    1. 10.171.29.191 master  
    2. 10.171.94.155  slave1  
    3. 10.251.0.197 slave3  


    其中master将gmeta及web,三台机都作gmon
    以下步骤均使用root用户执行

    2、master上安装gmeta及web

    [plain] view plaincopy在CODE上查看代码片派生到我的代码片
     
    1. yum install ganglia-web.x86_64  
    2. yum install ganglia-gmetad.x86_64  


    3、在三台机上都安抚gmond

    [plain] view plaincopy在CODE上查看代码片派生到我的代码片
     
    1. yum install ganglia-gmond.x86_64  


    4、在三台机器上配置/etc/ganglia/gmond.conf,修改以下内容:

    [plain] view plaincopy在CODE上查看代码片派生到我的代码片
     
    1. udp_send_channel {  
    2.   #bind_hostname = yes # Highly recommended, soon to be default.  
    3.                        # This option tells gmond to use a source address  
    4.                        # that resolves to the machine's hostname.  Without  
    5.                        # this, the metrics may appear to come from any  
    6.                        # interface and the DNS names associated with  
    7.                        # those IPs will be used to create the RRDs.  
    8.   mcast_join = 10.171.29.191  
    9.   port = 8649  
    10.   ttl = 1  
    11. }  
    12. /* You can specify as many udp_recv_channels as you like as well. */  
    13. udp_recv_channel {  
    14.   #mcast_join = 239.2.11.71  
    15.   port = 8649  
    16.   #bind = 239.2.11.71  
    17. }  


    即将默认的多播地址改为master地址,将udp_recv_channel 的2个IP注释掉。

    5、在master上修改/etc/ganglia/gmetad.conf
    修改data_source,改成:

    [plain] view plaincopy在CODE上查看代码片派生到我的代码片
     
    1. data_source "my cluster” 10.171.29.191  


    6、ln -s /usr/share/ganglia /var/www/ganglia
    若有问题,可以将/usr/share/ganglia的内容直接复制到/var/www/ganglia

    7、修改/etc/httpd/conf.d/ganglia.conf,改成:

    [plain] view plaincopy在CODE上查看代码片派生到我的代码片
     
    1. #  
    2.   # Ganglia monitoring system php web frontend  
    3.   #  
    4.    
    5.   Alias /ganglia /usr/share/ganglia  
    6.   
    7.   <Location /ganglia>  
    8.     Order deny,allow  
    9.     Allow from all  
    10.     Allow from 127.0.0.1  
    11.     Allow from ::1  
    12.     # Allow from .example.com  
    13.   </Location>  

    即将    Deny from all 改为    Allow from all,否则在页面访问时有权限问题。

    8、启动

    [plain] view plaincopy在CODE上查看代码片派生到我的代码片
     
    1. service gmetad start  
    2. service gmond start  
    3. /usr/sbin/apachectl start  


    9、从页面上访问
    http://ip/ganglia

    一些注意问题:
    1、gmetad收集到的信息被放到/var/lib/ganglia/rrds/

    2、可以通过以下命令检查是否有数据在传输

    [plain] view plaincopy在CODE上查看代码片派生到我的代码片
     
    1. tcpdump port 8649  



    三、配置hadoop与hbase

    1、配置hadoop

    hadoop-metrics2.properties

    [plain] view plaincopy在CODE上查看代码片派生到我的代码片
     
    1. # syntax: [prefix].[source|sink|jmx].[instance].[options]  
    2. # See package.html for org.apache.hadoop.metrics2 for details  
    3.   
    4. *.sink.file.class=org.apache.hadoop.metrics2.sink.FileSink  
    5.   
    6. #namenode.sink.file.filename=namenode-metrics.out  
    7.   
    8. #datanode.sink.file.filename=datanode-metrics.out  
    9.   
    10. #jobtracker.sink.file.filename=jobtracker-metrics.out  
    11.   
    12. #tasktracker.sink.file.filename=tasktracker-metrics.out  
    13.   
    14. #maptask.sink.file.filename=maptask-metrics.out  
    15.   
    16. #reducetask.sink.file.filename=reducetask-metrics.out  
    17. # Below are for sending metrics to Ganglia  
    18. #  
    19. # for Ganglia 3.0 support  
    20. # *.sink.ganglia.class=org.apache.hadoop.metrics2.sink.ganglia.GangliaSink30  
    21. #  
    22. # for Ganglia 3.1 support  
    23. *.sink.ganglia.class=org.apache.hadoop.metrics2.sink.ganglia.GangliaSink31  
    24.   
    25. *.sink.ganglia.period=10  
    26.   
    27. # default for supportsparse is false  
    28. *.sink.ganglia.supportsparse=true  
    29.   
    30. *.sink.ganglia.slope=jvm.metrics.gcCount=zero,jvm.metrics.memHeapUsedM=both  
    31. *.sink.ganglia.dmax=jvm.metrics.threadsBlocked=70,jvm.metrics.memHeapUsedM=40  
    32. menode.sink.ganglia.servers=10.171.29.191:8649  
    33.   
    34. datanode.sink.ganglia.servers=10.171.29.191:8649  
    35.   
    36. jobtracker.sink.ganglia.servers=10.171.29.191:8649  
    37. tasktracker.sink.ganglia.servers=10.171.29.191:8649  
    38.   
    39. maptask.sink.ganglia.servers=10.171.29.191:8649  
    40.   
    41. reducetask.sink.ganglia.servers=10.171.29.191:8649  

    2、配置hbase

    hadoop-metrics.properties

     

    [plain] view plaincopy在CODE上查看代码片派生到我的代码片
     
    1. # See http://wiki.apache.org/hadoop/GangliaMetrics  
    2. # Make sure you know whether you are using ganglia 3.0 or 3.1.  
    3. # If 3.1, you will have to patch your hadoop instance with HADOOP-4675  
    4. # And, yes, this file is named hadoop-metrics.properties rather than  
    5. # hbase-metrics.properties because we're leveraging the hadoop metrics  
    6. # package and hadoop-metrics.properties is an hardcoded-name, at least  
    7. # for the moment.  
    8. #  
    9. # See also http://hadoop.apache.org/hbase/docs/current/metrics.html  
    10. # GMETADHOST_IP is the hostname (or) IP address of the server on which the ganglia   
    11. # meta daemon (gmetad) service is running  
    12.   
    13. # Configuration of the "hbase" context for NullContextWithUpdateThread  
    14. # NullContextWithUpdateThread is a  null context which has a thread calling  
    15. # periodically when monitoring is started. This keeps the data sampled  
    16. # correctly.  
    17. hbase.class=org.apache.hadoop.metrics.spi.NullContextWithUpdateThread  
    18. hbase.period=10  
    19.   
    20. # Configuration of the "hbase" context for file  
    21. # hbase.class=org.apache.hadoop.hbase.metrics.file.TimeStampingFileContext  
    22. # hbase.fileName=/tmp/metrics_hbase.log  
    23.   
    24. # HBase-specific configuration to reset long-running stats (e.g. compactions)  
    25. # If this variable is left out, then the default is no expiration.  
    26. hbase.extendedperiod = 3600  
    27.   
    28. # Configuration of the "hbase" context for ganglia  
    29. # Pick one: Ganglia 3.0 (former) or Ganglia 3.1 (latter)  
    30. # hbase.class=org.apache.hadoop.metrics.ganglia.GangliaContext  
    31. hbase.class=org.apache.hadoop.metrics.ganglia.GangliaContext31  
    32. hbase.period=10  
    33. hbase.servers=10.171.29.191:8649  
    34.   
    35. # Configuration of the "jvm" context for null  
    36. jvm.class=org.apache.hadoop.metrics.spi.NullContextWithUpdateThread  
    37. jvm.period=10  
    38.   
    39. # Configuration of the "jvm" context for file  
    40. # jvm.class=org.apache.hadoop.hbase.metrics.file.TimeStampingFileContext  
    41. # jvm.fileName=/tmp/metrics_jvm.log  
    42.   
    43. # Configuration of the "jvm" context for ganglia  
    44. # Pick one: Ganglia 3.0 (former) or Ganglia 3.1 (latter)  
    45. # jvm.class=org.apache.hadoop.metrics.ganglia.GangliaContext  
    46. jvm.class=org.apache.hadoop.metrics.ganglia.GangliaContext31  
    47. jvm.period=10  
    48. jvm.servers=10.171.29.191:8649  
    49.   
    50. # Configuration of the "rpc" context for null  
    51. rpc.class=org.apache.hadoop.metrics.spi.NullContextWithUpdateThread  
    52. rpc.period=10  
    53.   
    54. # Configuration of the "rpc" context for file  
    55. # rpc.class=org.apache.hadoop.hbase.metrics.file.TimeStampingFileContext  
    56. # rpc.fileName=/tmp/metrics_rpc.log  
    57.   
    58. # Configuration of the "rpc" context for ganglia  
    59. # Pick one: Ganglia 3.0 (former) or Ganglia 3.1 (latter)  
    60. # rpc.class=org.apache.hadoop.metrics.ganglia.GangliaContext  
    61. rpc.class=org.apache.hadoop.metrics.ganglia.GangliaContext31  
    62. rpc.period=10  
    63. rpc.servers=10.171.29.191:8649  
    64.   
    65. # Configuration of the "rest" context for ganglia  
    66. # Pick one: Ganglia 3.0 (former) or Ganglia 3.1 (latter)  
    67. # rest.class=org.apache.hadoop.metrics.ganglia.GangliaContext  
    68. rest.class=org.apache.hadoop.metrics.ganglia.GangliaContext31  
    69. rest.period=10  
    70. rest.servers=10.171.29.191:8649  


    重启hadoop与hbase。

  • 相关阅读:
    最长双回文串
    BUUOJ misc 二维码
    HDU 1284 钱币兑换问题 (动态规划 背包方案数)
    HDU 1260 Tickets (动态规划)
    HDU 1231 最大连续子序列 (动态规划)
    HDU 1203 I NEED A OFFER! (动态规划、01背包、概率)
    BUUOJ reverse SimpleRev (爆破)
    BUUOJ reverse 不一样的flag
    HDU 1176 免费馅饼 (动态规划、另类数塔)
    HDU 1171 Big Event in HDU (动态规划、01背包)
  • 原文地址:https://www.cnblogs.com/zhengrunjian/p/4998334.html
Copyright © 2011-2022 走看看