zoukankan      html  css  js  c++  java
  • CVPR2018+ECCV2018目标检测算法汇总

    特别感谢实验室小雷同学汇总此篇,日后学习目标跟踪可以有个好的方向好的借鉴,哪怕是比赛的时候选模型都可以参考一下。

    ----------------------------------------------------------

    论文对应序号

    method

    dataset

    code

     

     

    VOC2007

    VOC2012

    COCO

     

    1

    Cascade R-CNN

     

     

    42.8(AP)

    2

    Relation Net

     

     

    39.0(加到别的方法上)

    3

    RefineDet

    85.8

    86.8

    41.8(AP)

    4

    SNIP

     

     

     

    5

    R-FCN-3000

    43.3(ImageNet)

    6

    DES

    84.3

    83.7

    32.8

    7

    STDN

    80.9

     

    31.8

    8

    W2F

    52.4

    47.8

     

    9

    无简写

    51.2

     

     

    10

    MELM

    47.3

    42.4

     

    11

    SSM

    62.9

     

     

    12

    无简写

    82.9

     

    35.6(AP)

    13

    PAD

    80.7

    79.5

     

    14

    ZLDN

    47.6

    42.9

     

    15

    无简写

     

     

    39.5

    16

    MegDet

     

     

    52.5(mmAP)

    17

    drl-RPN

    76.4

    72.2

     

    18

    SIN

    76.0

    73.1

    23.2(AP)

    19

    SOD-MTGAN

     

     

    41.4(AP)

    20

    ML-LocNet

    49.7

    43.6

    16.2(COCO2014)

    21

    DetNet

     

     

    40.3

    22

    无简写

    50.4

    69.3

     

    23

    无简写

    25.4

    22.9

     

    24

    无简写

    82.4

    81.1

    34.6(AP)

    25

    RFB-NET

    82.2

     

    29.7(COCO2014)

    34.4(COCO2015)

    26

    PFP-NET

    84.1

    83.7

    41.8

    27

    TS2C

    44.3

    40.0

     

    28

    SAN

    82.8

     

    43.4

    29

    无简写

     

    81.2

    mmAP:39.3(COCO2017)

    30

    无简写

     

     

    42.0(AP)

    附:

    (1)论文对应序号中,序号1-18篇收录于CVPR19-30收录于ECCV。

    (2)在经典数据库的检测精度取在论文中实现的最高精度,不考虑base network。

    (3)method列仅写出算法简称。

    (4)针对COCO数据集的检测结果不可进行统一比较。有的是在COCO2014COCO2015或者是COCO2017上测试,评价指标稍有不同。

    (5)CVPR2019论文未公布。

    ======以下排名仅对论文中有在对应数据集测试的算法进行排序=========

     

    VOC2007数据集排名

    论文对应序号

    method

    mAP

    排名

    3

    RefineDet

    85.8

    1

    6

    DES

    84.3

    2

    26

    PFP-NET

    84.1

    3

    12

    无简写

    82.9

    4

    28

    SAN

    82.8

    5

    24

    无简写

    82.4

    6

    25

    RFB-NET

    82.2

    7

    7

    STDN

    80.9

    8

    13

    PAD

    80.7

    9

    17

    drl-RPN

    76.4

    10

    18

    SIN

    76.0

    11

    11

    SSM

    62.9

    12

    8

    W2F

    52.4

    13

    9

    无简写

    51.2

    14

    22

    无简写

    50.4

    15

    20

    ML-LocNet

    49.7

    16

    14

    ZLDN

    47.6

    17

    10

    MELM

    47.3

    18

    27

    TS2C

    44.3

    19

    23

    无简写

    25.4

    20

     

    VOC2012数据集排名

    论文对应序号

    method

    mAP

    排名

    3

    RefineDet

    86.8

    1

    6

    DES

    83.7

    2

    26

    PFP-NET

    83.7

    2

    29

    无简写

    81.2

    3

    24

    无简写

    81.1

    4

    13

    PAD

    79.5

    5

    18

    SIN

    73.1

    6

    17

    drl-RPN

    72.2

    7

    22

    无简写

    69.3

    8

    8

    W2F

    47.8

    9

    20

    ML-LocNet

    43.6

    10

    14

    ZLDN

    42.9

    11

    10

    MELM

    42.4

    12

    27

    TS2C

    40.0

    13

    23

    无简写

    22.9

    14

    22

    无简写

    50.4

    15

    20

    ML-LocNet

    49.7

    16

    14

    ZLDN

    47.6

    17

    10

    MELM

    47.3

    18

    27

    TS2C

    44.3

    19

    23

    无简写

    25.4

    20

    COCO数据集排名

    论文对应序号

    method

    mAP

    排名

    16

    MegDet

    52.5(mmAP)

    1

    28

    SAN

    43.4

    2

    1

    Cascade R-CNN

    42.8(AP)

    3

    30

    无简写

    42.0(AP)

    4

    26

    PFP-NET

    41.8

    5

    3

    RefineDet

    41.8(AP)

    6

    19

    SOD-MTGAN

    41.4(AP)

    7

    21

    DetNet

    40.3

    8

    15

    无简写

    39.5

    9

    29

    无简写

    mmAP:39.3(COCO2017)

    10

    2

    Relation Net

    39.0(加到别的方法上)

    11

    12

    无简写

    35.6(AP)

    12

    24

    无简写

    34.6(AP)

    13

    25

    RFB-NET

    29.7(COCO2014)

    34.4(COCO2015)

    14

    6

    DES

    32.8

    15

    7

    STDN

    31.8

    16

    18

    SIN

    23.2(AP)

    17

    20

    ML-LocNet

    16.2(COCO2014)

    18

    1Cascaded RCNN 

    论文

    Cascade R-CNN : Delving into High Quality Object Detection

    论文链接

    https://arxiv.org/abs/1712.00726

    代码链接

    https://github.com/zhaoweicai/cascade-rcnn

    实验结果

     

    2、Relation Net

    论文

    Relation Networks for Object Detection

    论文链接

    https://arxiv.org/abs/1711.11575

    代码链接

    https://github.com/msracver/Relation-Networks-for-Object-Detection

    实验结果

    (实验是针对two stage系列的目标检测算法而言,在ROI Pooling后的两个全连接层和NMS模块引入object relation module,如Figure1所示,因此做到了完整的end-to-end训练。)

    3、RefineDet

    论文

    Single-Shot Refinement Neural Network for Object Detection

    论文链接

    https://arxiv.org/abs/1711.06897

    代码链接

    https://github.com/sfzhang15/RefineDet

    实验结果

    4、SNIP 

    论文

    An Analysis of Scale Invariance in Object Detection – SNIP

    论文链接

    https://arxiv.org/abs/1711.08189

    代码链接

    http://bit.ly/2yXVg4c(打不开)

    实验结果

    5R-FCN-3000 

    论文

    R-FCN-3000 at 30fps: Decoupling Detection and Classification

    论文链接

    https://arxiv.org/abs/1712.01802

    代码链接

    ImageNet实验结果

    6、DES 

    论文

    Single-Shot Object Detection with Enriched Semantics

    论文链接

    https://arxiv.org/abs/1712.00433

    代码链接

    实验结果

    7、STDN 

    论文

    Scale-Transferrable Object Detection

    论文链接

    http://openaccess.thecvf.com/content_cvpr_2018/papers/Zhou_Scale-Transferrable_Object_Detection_CVPR_2018_paper.pdf

    代码链接

    https://github.com/arvention/STDN

    实验结果

    8W2F

    论文

    W2F: A Weakly-Supervised to Fully-Supervised Framework for Object Detection

    论文链接

    http://openaccess.thecvf.com/content_cvpr_2018/papers/Zhang_W2F_A_Weakly-Supervised_CVPR_2018_paper.pd

    代码链接

    实验结果

    9

    论文

    Multi-Evidence Filtering and Fusion for Multi-Label Classification, Object Detection and Semantic Segmentation Based on Weakly Supervised Learning

    论文链接

    http://openaccess.thecvf.com/content_cvpr_2018/papers/Ge_Multi-Evidence_Filtering_and_CVPR_2018_paper.pdf

    代码链接

    实验结果

     

    10MELM

    论文

    Min-Entropy Latent Model for Weakly Supervised Object Detection

    论文链接

    http://openaccess.thecvf.com/content_cvpr_2018/papers/Wan_Min-Entropy_Latent_Model_CVPR_2018_paper.pdf

    代码链接

    https://github.com/Winfrand/MELM

    实验结果

    11SSM

    论文

    Towards Human-Machine Cooperation: Self-supervised Sample Mining for Object Detection

    论文链接

    http://openaccess.thecvf.com/content_cvpr_2018/papers/Wang_Towards_Human-Machine_Cooperation_CVPR_2018_paper.pdf

    代码链接

    https://github.com/yanxp/SSM-Pytorch

    实验结果

    12

    论文

    Feature Selective Networks for Object Detection

    论文链接

    https://arxiv.org/abs/1711.08879

    代码链接

    https://github.com/robwec/feature-selective-networks

    实验结果

    13PAD

    论文

    Pseudo Mask Augmented Object Detection

    论文链接

    http://openaccess.thecvf.com/content_cvpr_2018/papers/Zhao_Pseudo_Mask_Augmented_CVPR_2018_paper.pdf

    代码链接

    实验结果

     

    14ZLDN

    论文

    Zigzag Learning for Weakly Supervised Object Detection

    论文链接

    http://openaccess.thecvf.com/content_cvpr_2018/papers/Zhang_Zigzag_Learning_for_CVPR_2018_paper.pdf

    代码链接

    实验结果

     

    15

    论文

    Learning Globally Optimized Object Detector via Policy Gradient

    论文链接

    http://openaccess.thecvf.com/content_cvpr_2018/papers/Rao_Learning_Globally_Optimized_CVPR_2018_paper.pdf

    代码链接

    实验结果

     

    16MegDet

    论文

    MegDet: A Large Mini-Batch Object Detector

    论文链接

    http://openaccess.thecvf.com/content_cvpr_2018/papers/Peng_MegDet_A_Large_CVPR_2018_paper.pdf

    代码链接

    实验结果

    The MegDet is the backbone of our submission (mmAP 52.5%) to COCO 2017 Challenge, where we won the 1st place of Detection task.

     

    17drl-RPN

    论文

    Deep Reinforcement Learning of Region Proposal Networks for Object Detection

    论文链接

    http://openaccess.thecvf.com/content_cvpr_2018/papers/Pirinen_Deep_Reinforcement_Learning_CVPR_2018_paper.pdf

    代码链接

    https://github.com/aleksispi/drl-rpn-tf

    实验结果

     

    18SIN

    论文

    Structure Inference Net: Object Detection Using Scene-Level Context and Instance-Level Relationships

    论文链接

    http://openaccess.thecvf.com/content_cvpr_2018/papers/Liu_Structure_Inference_Net_CVPR_2018_paper.pdf

    代码链接

    https://github.com/choasup/SIN

    实验结果

     

    以下是ECCV2018论文

    19SOD-MTGAN

    论文:SOD-MTGAN: Small Object Detection via Multi-Task Generative Adversarial Network

    论文链接:

    http://openaccess.thecvf.com/content_ECCV_2018/papers/Yongqiang_Zhang_SOD-MTGAN_Small_Object_ECCV_2018_paper.pdf

    代码链接:

    实验结果

     

    20ML-LocNet

    论文:ML-LocNet: Improving Object Localization with Multi-view Learning Network

    论文链接:

    http://openaccess.thecvf.com/content_ECCV_2018/papers/Xiaopeng_Zhang_ML-LocNet_Improving_Object_ECCV_2018_paper.pdf

    代码链接:

    实验结果

     

     

    21DetNet

    论文:DetNet: Design Backbone for Object Detection

    论文链接:

    http://openaccess.thecvf.com/content_ECCV_2018/papers/Zeming_Li_DetNet_Design_Backbone_ECCV_2018_paper.pdf

    代码链接:https://github.com/guoruoqian/DetNet_pytorch

    或者https://github.com/BigDeviltjj/mxnet-detnet

    实验结果

     

    22

    论文:Weakly Supervised Region Proposal Network and Object Detection

    论文链接:

    http://openaccess.thecvf.com/content_ECCV_2018/papers/Peng_Tang_Weakly_Supervised_Region_ECCV_2018_paper.pdf

    代码链接:

    实验结果

     

     

    23

    论文:Zero-Annotation Object Detection with Web Knowledge Transfer

    论文链接:

    http://openaccess.thecvf.com/content_ECCV_2018/papers/Qingyi_Tao_Zero-Annotation_Object_Detection_ECCV_2018_paper.pdf

    代码链接:

    实验结果

     

     

     

    24

    论文:Deep Feature Pyramid Reconfiguration for Object Detection

    论文链接:

    http://openaccess.thecvf.com/content_ECCV_2018/papers/Tao_Kong_Deep_Feature_Pyramid_ECCV_2018_paper.pdf

    代码链接:

    实验结果

     

    25RFB-NET

    论文:Receptive Field Block Net for Accurate and Fast Object Detection

    论文链接:

    http://openaccess.thecvf.com/content_ECCV_2018/papers/Songtao_Liu_Receptive_Field_Block_ECCV_2018_paper.pdf

    代码链接:https://github.com/ruinmessi/RFBNet

    实验结果

     

    26PFP-NET

    论文:Parallel Feature Pyramid Network for Object Detection

    论文链接:

    http://openaccess.thecvf.com/content_ECCV_2018/papers/Seung-Wook_Kim_Parallel_Feature_Pyramid_ECCV_2018_paper.pdf

    代码链接:

    实验结果

     

    27TS2C

    论文:TS2C: Tight Box Mining with Surrounding Segmentation Context for Weakly Supervised Object Detection

    论文链接:

    http://openaccess.thecvf.com/content_ECCV_2018/papers/Yunchao_Wei_TS2C_Tight_Box_ECCV_2018_paper.pdf

    代码链接:

    实验结果

     

    28SAN

    论文:

    SAN: Learning Relationship between Convolutional Features for Multi-Scale Object Detection

    论文链接:

    http://openaccess.thecvf.com/content_ECCV_2018/papers/Kim_SAN_Learning_Relationship_ECCV_2018_paper.pdf

    代码链接:

    实验结果

     

    29

    论文:Deep Regionlets for Object Detection

    论文链接:

    http://openaccess.thecvf.com/content_ECCV_2018/papers/Hongyu_Xu_Deep_Regionlets_for_ECCV_2018_paper.pdf

    代码链接:

    实验结果

     

    30

    论文:Context Refinement for Object Detection

    论文链接:

    http://openaccess.thecvf.com/content_ECCV_2018/papers/Zhe_Chen_Context_Refinement_for_ECCV_2018_paper.pdf

    代码链接:

    实验结果

     

  • 相关阅读:
    虚拟机中无法显示摄像头驱动问题
    格式化的打印输出
    adb 常用命令
    stl list 正确删除节点程序实例
    程序猿的终点?!!!
    奇迹是否会发生?乙肝从大三阳到小三阳到自愈!
    2014年誓言:干掉网页设计程序——Dreamweaver!
    Dreamweaver杀手!Illustrator终结者?Flash的末日?图形图像设计程序之网页版
    网页程序 vs 桌面程序
    x13 vs md5
  • 原文地址:https://www.cnblogs.com/zhengyuqian/p/10509763.html
Copyright © 2011-2022 走看看