4/4
弱渣做不动CF了,弱渣只能水水BC了,于是就开始每周开心地BC了,顺便写个水水的题解~~
题A hdu 5224
题意:略
题解:枚举边长即可。
1 /*zhen hao*/
2 #include <bits/stdc++.h>
3 using namespace std;
4
5 #define lson l, m, rt*2
6 #define rson m + 1, r, rt*2+1
7 #define xx first
8 #define yy second
9
10 typedef pair<int,int> pii;
11 typedef long long ll;
12 typedef unsigned long long ull;
13
14 int main() {
15 // freopen("case.in", "r", stdin);
16 int T;
17 cin >> T;
18 while (T--) {
19 int n;
20 scanf("%d", &n);
21 int ans = 1 << 30;
22 for (int i = 1; i * i <= n; i++) {
23 if (n % i == 0) {
24 ans = min(ans, 2 * (i + n / i));
25 }
26 }
27 printf("%d
", ans);
28 }
29 return 0;
30 }
题B hdu 5225
题意:略
题解:可以用递推算出每个大小为n的排列的逆序对总数,就是考虑每次增加n之后逆序对数增加多少,分别把n放在第一个位置……第n个位置。得到s[n];然后就是对于一个排列运用类似的方法,不断细化,想数位dp得到答案的过程一样。具体是这样,我也不知道怎么水出来的~~
1 /*zhen hao*/
2 #include <bits/stdc++.h>
3 using namespace std;
4
5 #define lson l, m, rt*2
6 #define rson m + 1, r, rt*2+1
7 #define xx first
8 #define yy second
9
10 typedef pair<int,int> pii;
11 typedef long long ll;
12 typedef unsigned long long ull;
13
14 const int mod = 1e9 + 7, maxn = 1e2 + 10;
15 int p[maxn], vis[maxn], n;
16 ll s[maxn], f[maxn];
17
18 void init() {
19 f[1] = 1; s[1] = 0;
20 for (int i = 2; i < maxn; i++) {
21 f[i] = f[i - 1] * i % mod;
22 s[i] = (s[i - 1] * i % mod + f[i - 1] * i * (i - 1) / 2) % mod;
23 }
24 // cout << s[5] << endl;
25 }
26
27 ll slove() {
28 ll ret = 0;
29 memset(vis, 0, sizeof vis);
30 ll big = 0;
31 for (int i = 1; i <= n; i++) {
32 for (int j = 1; j < p[i]; j++) if (!vis[j]) {
33 ll extra = 0;
34 for (int k = 1; k < j; k++) if (!vis[k]) extra++;
35 ret += ((big + extra) * f[n - i] + s[n - i]) % mod;
36 if (ret >= mod) ret -= mod;
37 }
38 for (int j = 1; j < p[i]; j++) if (!vis[j]) big++;
39 vis[p[i]] = 1;
40 }
41 return ret;
42 }
43
44 int main() {
45 // freopen("case.in", "r", stdin);
46 init();
47 while (scanf("%d", &n) == 1) {
48 for (int i = 1; i <= n; i++) scanf("%d", p + i);
49 printf("%I64d
", slove());
50 }
51 return 0;
52 }
题C hdu 5226
题意:略
题解:先说一下我的做法,对于一个组合数可以写成c(a, b) = c(a - 1, b - 1) + c(a - 1, b),所以上一行是下一行乘以2再减去最右端的(只加了一次),所以可以递推过去。然后就是这道题的一个坑点:不能直接求逆元。为什么呢?因为假设分子的p因子的个数更多,那么modp之后得到的就是0,所以这时候求逆元就不准了,究其原因就是因为gcd!=1,所以不能够求逆元,除去这种情况是可以的,因为p是素数。解决方法有两种:
1、lucas定理,因为是以p为一次划分,所以可以很有效地避免。
2、要求a!/ (b ! * (a - b)!),所以求出num[a]表示a!有多少个p,然后只要num[a] - num[b] - num[a - b] > 0就直接是0,其余就可以用逆元来处理。
最后官方并不需要我那样递推过去,而是用一个性质:C(x + 1,y)即为∑x C(i,y),具体可以联系杨辉三角来证。
1 /*zhen hao*/
2 #include <bits/stdc++.h>
3 using namespace std;
4
5 #define lson l, m, rt*2
6 #define rson m + 1, r, rt*2+1
7 #define xx first
8 #define yy second
9
10 typedef pair<int,int> pii;
11 typedef long long ll;
12 typedef unsigned long long ull;
13
14 const int maxn = 2e5 + 10;
15 ll p;
16 ll f[maxn], c[maxn];
17
18 ll quick(ll a, ll b) {
19 ll ret = 1;
20 while (b > 0) {
21 if (b & 1) ret = ret * a % p;
22 a = a * a % p;
23 b = b / 2;
24 }
25 return ret;
26 }
27
28 void init() {
29 f[0] = 1;
30 for (int i = 1; i < maxn; i++) f[i] = f[i - 1] * i % p;
31 for (int i = 0; i < maxn; i++) c[i] = quick(f[i], p - 2);
32 }
33
34 ll C(int n, int m) {
35 if(n == 0 && m == 0) return 1;
36 if(n == 0) return 0;
37 if(n % p < m % p) return 0;
38 int x = n % p, y = m % p;
39 return f[x] * c[y] % p * c[x-y] % p * C(n / p, m / p);
40 }
41
42 ll slove(int x, int y) {
43 if (x < 0 || y < 0) return 0;
44 ll ret = 1 , s = 1;
45 for (int i = 1; i <= x; i++) {
46 s = (s * 2 % p - C(i - 1, y)) % p;
47 ret = (ret + s) % p;
48 }
49 return (ret + p) % p;
50 }
51
52 int main() {
53 // freopen("case.in", "r", stdin);
54 int x1, x2, y1, y2;
55 while (scanf("%d%d%d%d%I64d", &x1, &y1, &x2, &y2, &p) != EOF) {
56 init();
57 ll ans1 = (slove(x2, y2) + slove(x1 - 1, y1 - 1)) % p;
58 ll ans2 = ((slove(x1 - 1, y2)) + slove(x2, y1 - 1)) % p;
59 ll ans = (ans1 - ans2) % p;
60 printf("%I64d
", (ans + p) % p);
61 }
62 return 0;
63 }
题D hdu 5227
题意:给你四元对(t,a,b,k),满足下面条件就是合法的:
1、 1 <= a, b, k <= t
2、 gcd(a,b) >= k
然后给你一颗树,每个点表示一个四元对,随机选两个点,然后这路径上的点就是来玩游戏的点,玩游戏的方法就是每次选一个四元对,然后变成一个更小的合法四元对,然后最后不能操作者输,现在让你算出有多少种选法是必败的?
题解:很容易想到nim,每个四元对当做一堆石头,个数就是比它小的四元对个数,然后假设知道之后我们知道一条路径的异或值为0就是必败的,所以就转化成树分治的求异或值为0的路径数量,这个比较简单,所以本题就难在求比当前四元对小的合法的四元对的数量。
求这个东西太难了,要参考贾志鹏线性筛,以后再学吧,先套个公式吧 !!
1 /*zhen hao*/
2 #include <bits/stdc++.h>
3 using namespace std;
4
5 #define lson l, m, rt*2
6 #define rson m + 1, r, rt*2+1
7 #define xx first
8 #define yy second
9
10 typedef pair<int,int> pii;
11 typedef long long ll;
12 typedef unsigned long long ull;
13
14 const int maxn = 1e4 + 10;
15 int head[maxn], e = 0, n;
16 ll phi[maxn], v[maxn], val[maxn];
17
18 struct Edge {
19 int v, nx;
20 } edges[maxn * 2];
21
22 ll get(int n, int m) {
23 if (n > m) swap(n, m);
24 ll ret = 0;
25 for (int i = 1, j; i <= n; i = j + 1) {
26 j = min(n / (n / i), m / (m / i));
27 ret += 1ll * (phi[j] - phi[i - 1]) * (n / i) * (m / i);
28 }
29 return ret;
30 }
31
32 void phi_table() {
33 phi[1] = 1;
34 for (int i = 2; i < maxn; i++) if (!phi[i])
35 for (int j = i; j < maxn; j += i) {
36 if (!phi[j]) phi[j] = j;
37 phi[j] = phi[j] / i * (i - 1);
38 }
39 for (int i = 1; i < maxn; i++) phi[i] += phi[i - 1];
40 for (int i = 1; i < maxn; i++) v[i] = v[i - 1] + get(i, i);
41 }
42
43 void init() {
44 e = 0;
45 memset(head, -1, sizeof head);
46 }
47
48 void add_edge(int u, int v) {
49 edges[e] = (Edge){v, head[u]};
50 head[u] = e++;
51 }
52
53 int sz[maxn], vis[maxn];
54
55 void dfs_s(int u, int p) {
56 sz[u] = 1;
57 for (int i = head[u]; ~i; i = edges[i].nx) {
58 int v = edges[i].v;
59 if (v == p || vis[v]) continue;
60 dfs_s(v, u);
61 sz[u] += sz[v];
62 }
63 }
64
65 int dp[maxn];
66
67 void dfs_t(int& s, int u, int p, int cnt) {
68 dp[u] = 0;
69 for (int i = head[u]; ~i; i = edges[i].nx) {
70 int v = edges[i].v;
71 if (v == p || vis[v]) continue;
72 dfs_t(s, v, u, cnt);
73 dp[u] = max(dp[u], sz[v]);
74 }
75 dp[u] = max(dp[u ], cnt - sz[u]);
76 if (s == -1 || dp[u] < dp[s]) s = u;
77 }
78
79 ll c1[maxn]; int c;
80
81 void dfs_c(int u, int p, ll d) {
82 c1[c++] = d;
83 for (int i = head[u]; ~i; i = edges[i].nx) {
84 int v = edges[i].v;
85 if (v == p || vis[v]) continue;
86 dfs_c(v, u, d ^ val[v]);
87 }
88 }
89
90 map<ll,int>::iterator it;
91
92 ll slove(int s) {
93 dfs_s(s, -1);
94 int cnt = sz[s], t = s;
95 s = -1;
96 dfs_t(s, t, -1, cnt);
97 vis[s] = 1;
98 ll ret = 0;
99 if (!val[s]) ret++;
100 map<ll,int> mp;
101 for (int i = head[s]; ~i; i = edges[i].nx) {
102 int v = edges[i].v;
103 if (vis[v]) continue;
104 c = 0;
105 dfs_c(v, s, val[v]);
106 for (int j = 0; j < c; j++) {
107 if ((c1[j] ^ val[s]) == 0) ret += 2;
108 it = mp.find(c1[j] ^ val[s]);
109 if (it != mp.end()) ret += (*it).yy * 2;
110 }
111 for (int j = 0; j < c; j++) mp[c1[j]]++;
112 }
113 for (int i = head[s]; ~i; i = edges[i].nx) {
114 int v = edges[i].v;
115 if (vis[v]) continue;
116 ret += slove(v);
117 }
118 return ret;
119 }
120
121 ll gcd(ll a, ll b) {
122 if (!b) return a;
123 return gcd(b, a % b);
124 }
125
126 int main() {
127 // freopen("case.in", "r", stdin);
128 phi_table();
129 while (scanf("%d", &n) == 1) {
130 init();
131 for (int i = 1; i < n; i++) {
132 int u, v;
133 scanf("%d%d", &u, &v);
134 add_edge(u, v); add_edge(v, u);
135 }
136 for (int i = 1; i <= n; i++) {
137 int a, b, c, d;
138 scanf("%d%d%d%d", &a, &b, &c, &d);
139 val[i] = v[a - 1] + d - 1;
140 val[i] += get(b - 1, a);
141 val[i] += get(b, c - 1) - get(b - 1, c - 1);
142 }
143 memset(vis, 0, sizeof vis);
144 ll a = 1ll * n * n - slove(1), b = 1ll * n * n;
145 if (!a) puts("0/1");
146 else {
147 ll d = gcd(a, b);
148 printf("%I64d/%I64d
", a / d, b / d);
149 }
150 }
151 return 0;
152 }