题目传送门
F(x)
Time Limit: 1000/500 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 8901 Accepted Submission(s): 3503
Problem Description
For a decimal number x with n digits (AnAn-1An-2 ... A2A1), we define its weight as F(x) = An * 2n-1 + An-1 * 2n-2 + ... + A2 * 2 + A1 * 1. Now you are given two numbers A and B, please calculate how many numbers are there between 0 and B, inclusive, whose weight is no more than F(A).
Input
The first line has a number T (T <= 10000) , indicating the number of test cases.
For each test case, there are two numbers A and B (0 <= A,B < 109)
For each test case, there are two numbers A and B (0 <= A,B < 109)
Output
For every case,you should output "Case #t: " at first, without quotes. The t is the case number starting from 1. Then output the answer.
Sample Input
3
0 100
1 10
5 100
Sample Output
Case #1: 1
Case #2: 2
Case #3: 13
Source
Recommend
题意:定义F(x),求在[0,m]中F[x]小于F(n)的数的个数
题解:数位dp
代码:
#include<iostream>
#include<string.h>
#include<algorithm>
#include<stdio.h>
#include<queue>
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef long long ll;
typedef pair<int,int> PII;
#define mod 1000000007
#define pb push_back
#define mp make_pair
#define all(x) (x).begin(),(x).end()
#define fi first
#define se second
//head
int T;
int n,m;
int bit[10];
int dp[10][4600];
int F(int x)
{
int cnt=0;
int len=0;
while(x)
{
cnt+=(x%10)*(1<<len);
x/=10;
len++;
}
return cnt;
}
int dfs(int pos,int sta,bool limit)
{
if(pos==-1) return sta>=0;
if(sta<0) return 0;
if(!limit&&dp[pos][sta]!=-1) return dp[pos][sta];
int ans=0;
int up=limit?bit[pos]:9;
for(int i=0;i<=up;i++)
ans+=dfs(pos-1,sta-i*(1<<pos),limit&&i==up);
if(!limit) dp[pos][sta]=ans;
return ans;
}
int calc(int x)
{
int len=0;
while(x)
{
bit[len++]=x%10;
x/=10;
}
return dfs(len-1,F(n),true);
}
int main()
{
scanf("%d",&T);
int ncase=0;
memset(dp,-1,sizeof(dp));
while(T--)
{
scanf("%d %d",&n,&m);
printf("Case #%d: ",++ncase);
printf("%d
",calc(m));
}
return 0;
}