zoukankan      html  css  js  c++  java
  • 21个项目-MNIST机器学习入门

    机器学习实现手写数字识别:

    from tensorflow.examples.tutorials.mnist import input_data
    import tensorflow as tf
    mnist=input_data.read_data_sets('MNIST_data/',one_hot=True)
    x=tf.placeholder(tf.float32,[None,784])
    w=tf.Variable(tf.zeros([784,10]))
    b=tf.Variable(tf.zeros([10]))
    y=tf.nn.softmax(tf.matmul(x,w)+b)
    y_=tf.placeholder(tf.float32,[None,10])
    cross_entropy=tf.reduce_mean(-tf.reduce_sum(y_*tf.log(y)))
    train_step=tf.train.GradientDescentOptimizer(0.01).minimize(cross_entropy)
    
    sess=tf.InteractiveSession()
    tf.global_variables_initializer().run()
    for i in range(1000):
        batch_xs,batch_ys=mnist.train.next_batch(100)
        sess.run(train_step,feed_dict={x:batch_xs,y_:batch_ys})
    correct_prediction=tf.equal(tf.argmax(y,1),tf.argmax(y_,1))
    accuracy=tf.reduce_mean(tf.cast(correct_prediction,tf.float32))
    print(sess.run(accuracy,feed_dict={x:mnist.test.images,y_:mnist.test.labels}))
    

     分类正确率:0.9191

    神经网络实现数字识别:反向传播算法

    import numpy as np
    import random
    import mnist_loader
    class Network(object):
        def __init__(self, sizes):
            self.num_layers = len(sizes)
            self.sizes = sizes
            self.biases = [np.random.randn(y, 1) for y in sizes[1:]]
            self.weights = [np.random.randn(y, x)
                            for x, y in zip(sizes[:-1], sizes[1:])]
        def sigmoid(self,z):
            return 1.0 / (1.0 + np.exp(-z))
        def feedforward(self, a):
            for b, w in zip(self.biases, self.weights):
                a = self.sigmoid(np.dot(w,a)+b)
            return a
        def SGD(self, training_data, epochs, mini_batch_size, eta,test_data=None):
            if test_data: n_test = len(test_data)
            n = len(training_data)
            for j in range(epochs):
                random.shuffle(training_data)
                mini_batches = [
                    training_data[k:k + mini_batch_size]
                    for k in range(0, n, mini_batch_size)]
                for mini_batch in mini_batches:
                    self.update_mini_batch(mini_batch, eta)
                if test_data:
                    print("Epoch {0}: {1} / {2}".format(j, self.evaluate(test_data), n_test))
                else:
                    print("Epoch {0} complete".format(j))
        def update_mini_batch(self, mini_batch, eta):
            nabla_b = [np.zeros(b.shape) for b in self.biases]
            nabla_w = [np.zeros(w.shape) for w in self.weights]
            for x, y in mini_batch:
                delta_nabla_b, delta_nabla_w = self.backprop(x, y)
                nabla_b = [nb + dnb for nb, dnb in zip(nabla_b, delta_nabla_b)]
                nabla_w = [nw + dnw for nw, dnw in zip(nabla_w, delta_nabla_w)]
            self.weights = [w - (eta / len(mini_batch)) * nw
                            for w, nw in zip(self.weights, nabla_w)]
            self.biases = [b - (eta / len(mini_batch)) * nb
                           for b, nb in zip(self.biases, nabla_b)]
        def backprop(self, x, y):
            nabla_b = [np.zeros(b.shape) for b in self.biases]
            nabla_w = [np.zeros(w.shape) for w in self.weights]
            # feedforward
            activation = x
            activations = [x]  # list to store all the activations, layer by layer
            zs = []  # list to store all the z vectors, layer by layer
            for b, w in zip(self.biases, self.weights):
                z = np.dot(w, activation) + b
                zs.append(z)
                activation = sigmoid(z)
                activations.append(activation)
            # backward pass
            delta = self.cost_derivative(activations[-1], y) * sigmoid_prime(zs[-1])
            nabla_b[-1] = delta
            nabla_w[-1] = np.dot(delta, activations[-2].transpose())
            for l in range(2, self.num_layers):
                z = zs[-l]
                sp = sigmoid_prime(z)
                delta = np.dot(self.weights[-l + 1].transpose(), delta) * sp
                nabla_b[-l] = delta
                nabla_w[-l] = np.dot(delta, activations[-l - 1].transpose())
            return (nabla_b, nabla_w)
    
        def evaluate(self, test_data):
            test_results = [(np.argmax(self.feedforward(x)), y)
                            for (x, y) in test_data]
            return sum(int(x == y) for (x, y) in test_results)
    
        def cost_derivative(self, output_activations, y):
            return (output_activations - y)
    def sigmoid(z):
        return 1.0 / (1.0 + np.exp(-z))
    def sigmoid_prime(z):
        return sigmoid(z) * (1 - sigmoid(z))
    if __name__=="__main__":
        training_data, validation_data, test_data = mnist_loader.load_data_wrapper()
        net = Network([784, 20, 10])
        net.SGD(training_data, 30, 10, 3.0, test_data=test_data)
    

    正确率:0.9295

    卷积神经网络实现手写数字识别:

    from tensorflow.examples.tutorials.mnist import input_data
    import tensorflow as tf
    
    def weight_variable(shape):
        initial=tf.truncated_normal(shape,stddev=0.1)
        return tf.Variable(initial)
    def bias_variable(shape):
        initial=tf.constant(0.1,shape=shape)
        return tf.Variable(initial)
    def conv2d(x,w):
        return tf.nn.conv2d(x,w,strides=[1,1,1,1],padding='SAME')
    def max_pool_2x2(x):
        return tf.nn.max_pool(x,ksize=[1,2,2,1],strides=[1,2,2,1],padding='SAME')
    
    if __name__ == '__main__':
        # 读入数据
        mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
        # x为训练图像的占位符、y_为训练图像标签的占位符
        x = tf.placeholder(tf.float32, [None, 784])
        y_ = tf.placeholder(tf.float32, [None, 10])
    
        # 将单张图片从784维向量重新还原为28x28的矩阵图片
        x_image = tf.reshape(x, [-1, 28, 28, 1])
    
        # 第一层卷积层
        W_conv1 = weight_variable([5, 5, 1, 32])
        b_conv1 = bias_variable([32])
        h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
        h_pool1 = max_pool_2x2(h_conv1)
    
        # 第二层卷积层
        W_conv2 = weight_variable([5, 5, 32, 64])
        b_conv2 = bias_variable([64])
        h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
        h_pool2 = max_pool_2x2(h_conv2)
    
        # 全连接层,输出为1024维的向量
        W_fc1 = weight_variable([7 * 7 * 64, 1024])
        b_fc1 = bias_variable([1024])
        h_pool2_flat = tf.reshape(h_pool2, [-1, 7 * 7 * 64])
        h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)
        # 使用Dropout,keep_prob是一个占位符,训练时为0.5,测试时为1
        keep_prob = tf.placeholder(tf.float32)
        h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)
    
        # 把1024维的向量转换成10维,对应10个类别
        W_fc2 = weight_variable([1024, 10])
        b_fc2 = bias_variable([10])
        y_conv = tf.matmul(h_fc1_drop, W_fc2) + b_fc2
    
        # 我们不采用先Softmax再计算交叉熵的方法,而是直接用tf.nn.softmax_cross_entropy_with_logits直接计算
        cross_entropy = tf.reduce_mean(
            tf.nn.softmax_cross_entropy_with_logits(labels=y_, logits=y_conv))
        # 同样定义train_step
        train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
    
        # 定义测试的准确率
        correct_prediction = tf.equal(tf.argmax(y_conv, 1), tf.argmax(y_, 1))
        accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
    
        # 创建Session和变量初始化
        sess = tf.InteractiveSession()
        sess.run(tf.global_variables_initializer())
    
        # 训练20000步
        for i in range(600):
            batch = mnist.train.next_batch(50)
            # 每100步报告一次在验证集上的准确度
            if i % 100 == 0:
                train_accuracy = accuracy.eval(feed_dict={x: batch[0], y_: batch[1], keep_prob: 1.0})
                print("第%d步, 正确率: %g" % (i, train_accuracy))
            train_step.run(feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5})
    
        # 训练结束后报告在测试集上的准确度
        train_accuracy=accuracy.eval(feed_dict={x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0})
        print("测试正确率 %g" %train_accuracy)
    View Code

    分类正确率:0.99

  • 相关阅读:
    P1662 数7
    P3645 [APIO2015]雅加达的摩天楼
    P3396 哈希冲突
    P7479 至曾是英雄的您
    P7480 Reboot from Blue
    Apache Commons Collections
    ESP8266 WIFI杀手
    ESP8266 固件升级
    ESP8266 MicroPython安装与使用
    Window 安装子系统
  • 原文地址:https://www.cnblogs.com/zhhy236400/p/10181239.html
Copyright © 2011-2022 走看看