zoukankan      html  css  js  c++  java
  • java 实现傅立叶变换算法 及复数的运算

    最近项目需求,需要把python中的算法移植到java上,其中有一部分需要用到复数的运算和傅立叶变换算法,废话不多说 如下:

    package qrs;
    /**
     *  复数的运算
     *
     */
    public class Complex {
        private final double re; // the real part
        private final double im; // the imaginary part
    
        // create a new object with the given real and imaginary parts
        public Complex(double real, double imag) {
            re = real;
            im = imag;
        }
    
        // return a string representation of the invoking Complex object
        public String toString() {
            if (im == 0)
                return re + "";
            if (re == 0)
                return im + "i";
            if (im < 0)
                return re + " - " + (-im) + "i";
            return re + " + " + im + "i";
        }
        // return abs/modulus/magnitude
        public double abs() {
            return Math.hypot(re, im);
        }
    
        // return angle/phase/argument, normalized to be between -pi and pi
        public double phase() {
            return Math.atan2(im, re);
        }
    
        // return a new Complex object whose value is (this + b)
        public Complex plus(Complex b) {
            Complex a = this; // invoking object
            double real = a.re + b.re;
            double imag = a.im + b.im;
            return new Complex(real, imag);
        }
    
        // return a new Complex object whose value is (this - b)
        public Complex minus(Complex b) {
            Complex a = this;
            double real = a.re - b.re;
            double imag = a.im - b.im;
            return new Complex(real, imag);
        }
    
        // return a new Complex object whose value is (this * b)
        public Complex times(Complex b) {
            Complex a = this;
            double real = a.re * b.re - a.im * b.im;
            double imag = a.re * b.im + a.im * b.re;
            return new Complex(real, imag);
        }
    
        // return a new object whose value is (this * alpha)
        public Complex scale(double alpha) {
            return new Complex(alpha * re, alpha * im);
        }
    
        // return a new Complex object whose value is the conjugate of this
        public Complex conjugate() {
            return new Complex(re, -im);
        }
    
        // return a new Complex object whose value is the reciprocal of this
        public Complex reciprocal() {
            double scale = re * re + im * im;
            return new Complex(re / scale, -im / scale);
        }
    
        // return the real or imaginary part
        public double re() {
            return re;
        }
    
        public double im() {
            return im;
        }
    
        // return a / b
        public Complex divides(Complex b) {
            Complex a = this;
            return a.times(b.reciprocal());
        }
    
        // return a new Complex object whose value is the complex exponential of
        // this
        public Complex exp() {
            return new Complex(Math.exp(re) * Math.cos(im), Math.exp(re) * Math.sin(im));
        }
    
        // return a new Complex object whose value is the complex sine of this
        public Complex sin() {
            return new Complex(Math.sin(re) * Math.cosh(im), Math.cos(re) * Math.sinh(im));
        }
    
        // return a new Complex object whose value is the complex cosine of this
        public Complex cos() {
            return new Complex(Math.cos(re) * Math.cosh(im), -Math.sin(re) * Math.sinh(im));
        }
    
        // return a new Complex object whose value is the complex tangent of this
        public Complex tan() {
            return sin().divides(cos());
        }
    
        // a static version of plus
        public static Complex plus(Complex a, Complex b) {
            double real = a.re + b.re;
            double imag = a.im + b.im;
            Complex sum = new Complex(real, imag);
            return sum;
        }
    
        // See Section 3.3.
        public boolean equals(Object x) {
            if (x == null)
                return false;
            if (this.getClass() != x.getClass())
                return false;
            Complex that = (Complex) x;
            return (this.re == that.re) && (this.im == that.im);
        }
    
        // sample client for testing
        public static void main(String[] args) {
            Complex a = new Complex(3.0, 4.0);
            Complex b = new Complex(-3.0, 4.0);
    
            System.out.println("a            = " + a);
            System.out.println("b            = " + b);
            System.out.println("Re(a)        = " + a.re());
            System.out.println("Im(a)        = " + a.im());
            System.out.println("b + a        = " + b.plus(a));
            System.out.println("a - b        = " + a.minus(b));
            System.out.println("a * b        = " + a.times(b));
            System.out.println("b * a        = " + b.times(a));
            System.out.println("a / b        = " + a.divides(b));
            System.out.println("(a / b) * b  = " + a.divides(b).times(b));
            System.out.println("conj(a)      = " + a.conjugate());
            System.out.println("|a|          = " + a.abs());
            System.out.println("tan(a)       = " + a.tan());
        }
    }
    

    傅立叶变换部分需要依赖复数类

    package qrs;
    
    /*************************************************************************
     * Compilation: javac FFT.java Execution: java FFT N Dependencies: Complex.java
     *
     * Compute the FFT and inverse FFT of a length N complex sequence. Bare bones
     * implementation that runs in O(N log N) time. Our goal is to optimize the
     * clarity of the code, rather than performance.
     *
     * Limitations ----------- - assumes N is a power of 2
     *
     * - not the most memory efficient algorithm (because it uses an object type for
     * representing complex numbers and because it re-allocates memory for the
     * subarray, instead of doing in-place or reusing a single temporary array)
     * 
     *************************************************************************/
    public class FFT {
        // compute the FFT of x[], assuming its length is a power of 2
        public static Complex[] fft(Complex[] x) {
            int N = x.length;
    
            // base case
            if (N == 1)
                return new Complex[] { x[0] };
    
            // radix 2 Cooley-Tukey FFT
            if (N % 2 != 0) {
                throw new RuntimeException("N is not a power of 2");
            }
    
            // fft of even terms
            Complex[] even = new Complex[N / 2];
            for (int k = 0; k < N / 2; k++) {
                even[k] = x[2 * k];
            }
            Complex[] q = fft(even);
    
            // fft of odd terms
            Complex[] odd = even; // reuse the array
            for (int k = 0; k < N / 2; k++) {
                odd[k] = x[2 * k + 1];
            }
            Complex[] r = fft(odd);
    
            // combine
            Complex[] y = new Complex[N];
            for (int k = 0; k < N / 2; k++) {
                double kth = -2 * k * Math.PI / N;
                Complex wk = new Complex(Math.cos(kth), Math.sin(kth));
                y[k] = q[k].plus(wk.times(r[k]));
                y[k + N / 2] = q[k].minus(wk.times(r[k]));
            }
            return y;
        }
    
        // compute the inverse FFT of x[], assuming its length is a power of 2
        public static Complex[] ifft(Complex[] x) {
            int N = x.length;
            Complex[] y = new Complex[N];
    
            // take conjugate
            for (int i = 0; i < N; i++) {
                y[i] = x[i].conjugate();
            }
    
            // compute forward FFT
            y = fft(y);
    
            // take conjugate again
            for (int i = 0; i < N; i++) {
                y[i] = y[i].conjugate();
            }
    
            // divide by N
            for (int i = 0; i < N; i++) {
                y[i] = y[i].scale(1.0 / N);
            }
    
            return y;
    
        }
    
        // compute the circular convolution of x and y
        public static Complex[] cconvolve(Complex[] x, Complex[] y) {
    
            // should probably pad x and y with 0s so that they have same length
            // and are powers of 2
            if (x.length != y.length) {
                throw new RuntimeException("Dimensions don't agree");
            }
    
            int N = x.length;
    
            // compute FFT of each sequence,求值
            Complex[] a = fft(x);
            Complex[] b = fft(y);
    
            // point-wise multiply,点值乘法
            Complex[] c = new Complex[N];
            for (int i = 0; i < N; i++) {
                c[i] = a[i].times(b[i]);
            }
    
            // compute inverse FFT,插值
            return ifft(c);
        }
    
        // compute the linear convolution of x and y
        public static Complex[] convolve(Complex[] x, Complex[] y) {
            Complex ZERO = new Complex(0, 0);
    
            Complex[] a = new Complex[2 * x.length];// 2n次数界,高阶系数为0.
            for (int i = 0; i < x.length; i++)
                a[i] = x[i];
            for (int i = x.length; i < 2 * x.length; i++)
                a[i] = ZERO;
    
            Complex[] b = new Complex[2 * y.length];
            for (int i = 0; i < y.length; i++)
                b[i] = y[i];
            for (int i = y.length; i < 2 * y.length; i++)
                b[i] = ZERO;
    
            return cconvolve(a, b);
        }
    
        // display an array of Complex numbers to standard output
        public static void show(Complex[] x, String title) {
            System.out.println(title);
            System.out.println("-------------------");
            int complexLength = x.length;
            for (int i = 0; i < complexLength; i++) {
                // 输出复数
                // System.out.println(x[i]);
                // 输出幅值需要 * 2 / length
                System.out.println(x[i].abs() * 2 / complexLength);
            }
            System.out.println();
        }
    
    /**
         * 将数组数据重组成2的幂次方输出
         * 
         * @param data
         * @return
         */
        public static Double[] pow2DoubleArr(Double[] data) {
    
            // 创建新数组
            Double[] newData = null;
    
            int dataLength = data.length;
    
            int sumNum = 2;
            while (sumNum < dataLength) {
                sumNum = sumNum * 2;
            }
            int addLength = sumNum - dataLength;
    
            if (addLength != 0) {
                newData = new Double[sumNum];
                System.arraycopy(data, 0, newData, 0, dataLength);
                for (int i = dataLength; i < sumNum; i++) {
                    newData[i] = 0d;
                }
            } else {
                newData = data;
            }
    
            return newData;
    
        }
    
        /**
         * 去偏移量
         * 
         * @param originalArr
         *            原数组
         * @return 目标数组
         */
        public static Double[] deskew(Double[] originalArr) {
            // 过滤不正确的参数
            if (originalArr == null || originalArr.length <= 0) {
                return null;
            }
    
            // 定义目标数组
            Double[] resArr = new Double[originalArr.length];
    
            // 求数组总和
            Double sum = 0D;
            for (int i = 0; i < originalArr.length; i++) {
                sum += originalArr[i];
            }
    
            // 求数组平均值
            Double aver = sum / originalArr.length;
    
            // 去除偏移值
            for (int i = 0; i < originalArr.length; i++) {
                resArr[i] = originalArr[i] - aver;
            }
    
            return resArr;
        }
    
    
        public static void main(String[] args) {
            // int N = Integer.parseInt(args[0]);
            Double[] data = { -0.35668879080953375, -0.6118094913035987, 0.8534269560320435, -0.6699697478438837, 0.35425500561437717,
                    0.8910250650549392, -0.025718699518642918, 0.07649691490732002 };
    
            // 去除偏移量
            data = deskew(data);
            // 个数为2的幂次方
            data = pow2DoubleArr(data);
    
            int N = data.length;
            System.out.println(N + "数组N中数量....");
            Complex[] x = new Complex[N];
            // original data
            for (int i = 0; i < N; i++) {
                // x[i] = new Complex(i, 0);
                // x[i] = new Complex(-2 * Math.random() + 1, 0);
                x[i] = new Complex(data[i], 0);
            }
    
            show(x, "x");
    
            // FFT of original data
    
            Complex[] y = fft(x);
            show(y, "y = fft(x)");
    
            // take inverse FFT
            Complex[] z = ifft(y);
            show(z, "z = ifft(y)");
    
            // circular convolution of x with itself
            Complex[] c = cconvolve(x, x);
            show(c, "c = cconvolve(x, x)");
    
            // linear convolution of x with itself
            Complex[] d = convolve(x, x);
            show(d, "d = convolve(x, x)");
        }
    }
    /*********************************************************************
     * % java FFT 8 x ------------------- -0.35668879080953375 -0.6118094913035987
     * 0.8534269560320435 -0.6699697478438837 0.35425500561437717 0.8910250650549392
     * -0.025718699518642918 0.07649691490732002
     * 
     * y = fft(x) ------------------- 0.5110172121330208 -1.245776663065442 +
     * 0.7113504894129803i -0.8301420417085572 - 0.8726884066879042i
     * -0.17611092978238008 + 2.4696418005143532i 1.1395317305034673
     * -0.17611092978237974 - 2.4696418005143532i -0.8301420417085572 +
     * 0.8726884066879042i -1.2457766630654419 - 0.7113504894129803i
     * 
     * z = ifft(y) ------------------- -0.35668879080953375 -0.6118094913035987 +
     * 4.2151962932466006E-17i 0.8534269560320435 - 2.691607282636124E-17i
     * -0.6699697478438837 + 4.1114763914420734E-17i 0.35425500561437717
     * 0.8910250650549392 - 6.887033953004965E-17i -0.025718699518642918 +
     * 2.691607282636124E-17i 0.07649691490732002 - 1.4396387316837096E-17i
     * 
     * c = cconvolve(x, x) ------------------- -1.0786973139009466 -
     * 2.636779683484747E-16i 1.2327819138980782 + 2.2180047699856214E-17i
     * 0.4386976685553382 - 1.3815636262919812E-17i -0.5579612069781844 +
     * 1.9986455722517509E-16i 1.432390480003344 + 2.636779683484747E-16i
     * -2.2165857430333684 + 2.2180047699856214E-17i -0.01255525669751989 +
     * 1.3815636262919812E-17i 1.0230680492494633 - 2.4422465262488753E-16i
     * 
     * d = convolve(x, x) ------------------- 0.12722689348916738 +
     * 3.469446951953614E-17i 0.43645117531775324 - 2.78776395788635E-18i
     * -0.2345048043334932 - 6.907818131459906E-18i -0.5663280251946803 +
     * 5.829891518914417E-17i 1.2954076913348198 + 1.518836016779236E-16i
     * -2.212650940696159 + 1.1090023849928107E-17i -0.018407034687857718 -
     * 1.1306778366296569E-17i 1.023068049249463 - 9.435675069681485E-17i
     * -1.205924207390114 - 2.983724378680108E-16i 0.796330738580325 +
     * 2.4967811657742562E-17i 0.6732024728888314 - 6.907818131459906E-18i
     * 0.00836681821649593 + 1.4156564203603091E-16i 0.1369827886685242 +
     * 1.1179436667055108E-16i -0.00393480233720922 + 1.1090023849928107E-17i
     * 0.005851777990337828 + 2.512241462921638E-17i 1.1102230246251565E-16 -
     * 1.4986790192807268E-16i
     *********************************************************************/
    
  • 相关阅读:
    允许Traceroute探测 (在防火墙中禁用Time Exceeded类型的ICMP包)
    fatal: not a git repository (or any of the parent directories): .git
    CentOS 7 配置白名单
    CentOS 7 找不到 iptables 文件(需要安装 iptables 服务)
    Grafana 匿名访问(免登录)
    How to install GCC/G++ 8 on CentOS
    【C++ Primer | 16】std::move、std::forward(完美转发)
    安利一个dll库缺失下载的网站
    google glog 源码编译踩坑 以及编译全流程
    VS工程不产生db后缀的文件
  • 原文地址:https://www.cnblogs.com/zhi-ming/p/10453177.html
Copyright © 2011-2022 走看看