zoukankan      html  css  js  c++  java
  • PostgreSQL分布式数据库实践

    为什么需要分布式数据库

      有很多原因数据库需要扩展性。1、请求需要访问的数据量过大(单纯的数据量大不是理由,例如从不访问,归档即可);2、服务器CPU、内存、网络、IO到了瓶颈,响应时间大大下降;3、MPP中,集中式数据库在设计时通常为了开发人员使用更加顺畅和丝滑,尽可能的让数据库设计和SQL非常简单,比如不需要指定某些表实际上是存在主外键关系,从而导致并行执行效果打折;或者并行执行在一开始并不包含,后面逐渐增强,导致并行执行有天然的缺陷,分区亦如此。这三通常是根本原因。

    Citus介绍

      首先提供了比较公正参考的是citus中国写的一篇文章PG-XL,Citus,GreenPlum如何选择,不同于其他分布式数据库如tidb、oceanbase、tdsql等每家都说自己最厉害,citus还是比较客观的分析,它自己比较适合于OLTP下的分布式,并不适合于大规模的adhoc场景。实际上很多系统数据量积累的比较大、同时业务流程又很复杂,但是TPS不高,这些系统要应用于分布式数据库,物理模型的设计是很重要的,不是简单的库能套上去的,例如数据中心、历史库的包含就很重要了。亦或者上去了就下不来了,维护成本会非常高。

      和其他分布式架构一样,citus也采用协调者和工作者节点,也可以认为是master和worker,说计算和存储分离是不合适的(大多数分布式数据库如oceanbase、goldendb、TDSQL自称计算和存储分离也是不合适的)。真正接近了存储和计算分离的是oracle exadata、tidb。如下所示,协调者和工作者一样都是postgresql实例。

      

      SQL语句经过语法解析后,在协调者节点的analyze阶段被citus扩展(和greenplum、xl、xc不同的是,citus采用的是extension机制(pg定义了大量hook供各种extension访问,具体可参见postgresql内核开发必备之extension机制))替换,并进行SQL语句的fork and join过程。得益于extension这一点,你可以认为citus本质上和greenplum、xl以及xc在事务、语法语义等数据库本身特性的支持上是差不多的。而不是三方中间件如pgpool、pgbouncer中的硬塞实现。因此具有更好的一致性和稳定性保证。

      在分布式事务的实现上,citus也是采用2PC协议。它的实现可以参考http://citusdb.cn/?p=661

      注:citus架构的优点在于,它认为分布式是一个特性,而不是属性。这一点LZ在所有场合都是这么坚信,95%+的系统永远都不需要微服务架构,数据库也不需要分布式,因为其到不了那个容量,所以理论上可以扩展使得应用能够同时运行于单实例和分布式,而其它一开始就设计为分布式的数据库是很难的。

      因为没有做单独GTM节点的概念,citus无法的协调者无法实现多活,这种情况下容易出现协调者单点,如下:

      

       对此,Citus还提供了两个参数use_secondary_node和writable_standby_coordinator以支持写入能力扩展及数据节点读写分离。这样standby cn也可以执行查询和DML操作。如下所示:

       由此可见,可靠的分布式数据库架构是非常复杂的,如果没有非常一体化的监控管理平台,其维护难度可想而知。

     参考:https://blog.csdn.net/weixin_46199817/article/details/117223870

    Citus安装

      可以从https://github.com/citusdata/citus下载源码或rpm,一般用户可以选择yum install citus101_13-10.1.1.citus-1.el7.x86_64。

    [zjh@lightdb1 usr]$ rpm -ql postgresql13-13.3-1PGDG.rhel7.x86_64
    /usr/pgsql-13/bin/clusterdb
    /usr/pgsql-13/bin/createdb
    /usr/pgsql-13/bin/createuser
    /usr/pgsql-13/bin/dropdb
    /usr/pgsql-13/bin/dropuser
    /usr/pgsql-13/bin/pg_basebackup
    /usr/pgsql-13/bin/pg_config
    /usr/pgsql-13/bin/pg_dump
    /usr/pgsql-13/bin/pg_dumpall
    
    
    [zjh@lightdb1 usr]$ rpm -qa | grep citus
    citus_13-10.0.3-1.rhel7.x86_64
    r[zjh@lightdb1 usr]$ rpm -ql citus_13-10.0.3-1.rhel7.x86_64
    /usr/pgsql-13/doc/extension/README-citus.md
    /usr/pgsql-13/lib/citus.so
    /usr/pgsql-13/share/extension/citus--10.0-1--10.0-2.sql
    /usr/pgsql-13/share/extension/citus--10.0-2--10.0-3.sql
    /usr/pgsql-13/share/extension/citus--8.0-1--8.0-2.sql
    /usr/pgsql-13/share/extension/citus--8.0-1.sql
    /usr/pgsql-13/share/extension/citus--8.0-10--8.0-11.sql
    /usr/pgsql-13/share/extension/citus--8.0-11--8.0-12.sql
    /usr/pgsql-13/share/extension/citus--8.0-12--8.0-13.sql
    /usr/pgsql-13/share/extension/citus--8.0-13--8.1-1.sql
    /usr/pgsql-13/share/extension/citus--8.0-2--8.0-3.sql
    /usr/pgsql-13/share/extension/citus--8.0-3--8.0-4.sql
    /usr/pgsql-13/share/extension/citus--8.0-4--8.0-5.sql
    /usr/pgsql-13/share/extension/citus--8.0-5--8.0-6.sql
    /usr/pgsql-13/share/extension/citus--8.0-6--8.0-7.sql
    /usr/pgsql-13/share/extension/citus--8.0-7--8.0-8.sql
    /usr/pgsql-13/share/extension/citus--8.0-8--8.0-9.sql
    /usr/pgsql-13/share/extension/citus--8.0-9--8.0-10.sql
    /usr/pgsql-13/share/extension/citus--8.1-1--8.2-1.sql
    /usr/pgsql-13/share/extension/citus--8.2-1--8.2-2.sql
    /usr/pgsql-13/share/extension/citus--8.2-2--8.2-3.sql
    /usr/pgsql-13/share/extension/citus--8.2-3--8.2-4.sql
    /usr/pgsql-13/share/extension/citus--8.2-4--8.3-1.sql
    /usr/pgsql-13/share/extension/citus--8.3-1--9.0-1.sql
    /usr/pgsql-13/share/extension/citus--9.0-1--9.0-2.sql
    /usr/pgsql-13/share/extension/citus--9.0-2--9.1-1.sql
    /usr/pgsql-13/share/extension/citus--9.1-1--9.2-1.sql
    /usr/pgsql-13/share/extension/citus--9.2-1--9.2-2.sql
    /usr/pgsql-13/share/extension/citus--9.2-2--9.2-4.sql
    /usr/pgsql-13/share/extension/citus--9.2-4--9.3-2.sql
    /usr/pgsql-13/share/extension/citus--9.3-1--9.2-4.sql
    /usr/pgsql-13/share/extension/citus--9.3-2--9.4-1.sql
    /usr/pgsql-13/share/extension/citus--9.4-1--9.5-1.sql
    /usr/pgsql-13/share/extension/citus--9.5-1--10.0-1.sql
    /usr/pgsql-13/share/extension/citus.control
    /usr/share/doc/citus_13-10.0.3
    /usr/share/doc/citus_13-10.0.3/CHANGELOG.md
    /usr/share/licenses/citus_13-10.0.3
    /usr/share/licenses/citus_13-10.0.3/LICENSE

      然后正常通过initdb创建postgresql数据库,1个CN,2个DN。

      如下:

    [zjh@lightdb1 pgsql-13]$ ll
    total 24
    drwxr-xr-x  2 zjh zjh 4096 Jun  1 17:43 bin
    drwx------ 21 zjh zjh 4096 Aug 29 00:00 coordinator_1
    drwxr-xr-x  3 zjh zjh   23 Jun  1 17:43 doc
    drwxr-xr-x  3 zjh zjh 4096 Jun 19 14:58 lib
    drwxr-xr-x  7 zjh zjh 4096 Jun  1 17:43 share
    drwx------ 21 zjh zjh 4096 Aug 29 00:00 worker_1_13588
    drwx------ 21 zjh zjh 4096 Aug 29 00:00 worker_2_23588

       安装citus插件:  

    -- CN和DN都要配置
    shared_preload_libraries='citus'  -- 第一个插件必须是citus
    CREATE EXTENSION citus;  -- 安装在postgres用户下即可
    SELECT * from citus_add_node('10.0.0.1', 13588);
    SELECT * from citus_add_node('10.0.0.1', 23588);

      查询DN列表:

    postgres=# SELECT * FROM citus_get_active_worker_nodes();
      node_name   | node_port 
    --------------+-----------
     10.0.0.1 |     23588
     10.0.0.1 |     13588
    (2 rows)

    概念

      在citus中,分片和节点不是一对一关系,这一点不同于greenplum,更接近nosql如couchbase的设计,一定程度上这么做也避免了使用了citus之后还需要分区的必要性(这是个优点、也是个缺点,平衡的结果)。 

    Citus表类型

      citus中表分三种类型,1:分库表(每个DN n个分片,分片数量可配置,一般是订单表和客户表);2:广播表(每个DN一份,CN不包括,一般是字典表、产品表、费率表、机构表、权限表等);3:全局表(仅存在于CN,一些系统参数表,统计表,也可能广播存储,看情况),全局表一般不会和广播表、分库表进行关联,默认CN创建表的时候就是local表,也可以通过SELECT undistribute_table('github_events');将分库表切换回local表(此时会数据先迁移回来,也是缩容的一种方式)。

      广播表和分库表,广播表和广播表之间关联会很多。

      同时会存在多种业务存在于同一个数据库中的情况,例如库存和客户,操作日志和订单,小二和菜单、功能、客户,并且同时有从菜单维度查,也有从小二维度查。所以citus支持对表进行分组,相关分组的表,citus在生成分布式执行计划的时候就知道那些是相关的,哪些是无关的。如下:

      SELECT create_distributed_table('event', 'tenant_id');
      SELECT create_distributed_table('page', 'tenant_id', colocate_with => 'event');

      分组的前提是两个表使用相同字段作为分片字段。分组可以使得SQL的优化更加进一步。

      总有一会儿,你会发现库存和客户表进行关联,通过订单进行的。这个时候库存是根据产品分片的,客户是通过客户id分片的。此时效果会怎么样呢?

      不同于greenplum支持distributed by语法,citus因为采用extension实现,没有扩展pg本身的语法,所以采用函数的方式来指定表是否为分布式表。

    CREATE TABLE companies (
    id bigserial PRIMARY KEY,
    name text NOT NULL,
    image_url text,
    created_at timestamp without time zone NOT NULL,
    updated_at timestamp without time zone NOT NULL
    );
    
    SELECT create_distributed_table('companies', 'id'); -- companies表为分布式表,id是用于分片的字段

      需要注意的是,citus分片数量和worker数量不是一一对应,这和gp不同,但类似于现在tidb、oceanbase的做法。如下:

     

       要创建广播表,可以使用create_reference_table函数:

    SELECT create_reference_table('geo_ips');  -- 所有worker节点广播,不包含CN

      大多数的DDL语句citus都支持,会负责分布式调用所有worker。

    自定义数据分布算法、副本数、分片数

    Citus函数类型

      不管用户是否承认,相同的功能,存储过程和函数实现的效率就是要比应用发送SQL过来效率更高。所以citus支持了分布式函数的概念。

    新增节点

      新增节点后,默认不会启用,需要调用rebalance_table_shards让citus对数据进行迁移,然后才会被访问。

      SELECT rebalance_table_shards('companies');

    执行计划分析

    explain(analyze,verbose,buffers) select
        count(*) as low_stock
    from
        (
        select
            s_w_id,
            s_i_id,
            s_quantity
        from
            bmsql_stock
        where
            s_w_id =     975
            and s_quantity < 12
            and s_i_id in (
            select
                ol_i_id
            from
                bmsql_district
            join bmsql_order_line on
                ol_w_id = d_w_id
                and ol_d_id = d_id
                and ol_o_id >= d_next_o_id - 20
                and ol_o_id < d_next_o_id
            where
                d_w_id =     975
                and d_id =    9 ) ) as L
    
    QUERY PLAN                                                                                                                                                                                                                                                     |
    ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
    Custom Scan (Citus Adaptive)  (cost=0.00..0.00 rows=0 width=0) (actual time=9.781..9.782 rows=1 loops=1)                                                                                                                                                       |
      Output: remote_scan.low_stock                                                                                                                                                                                                                                |
      Task Count: 1                                                                                                                                                                                                                                                |
      Tuple data received from nodes: 1 bytes                                                                                                                                                                                                                      |
      Tasks Shown: All                                                                                                                                                                                                                                             |
      ->  Task                                                                                                                                                                                                                                                     |
            Query: SELECT count(*) AS low_stock FROM (SELECT bmsql_stock.s_w_id, bmsql_stock.s_i_id, bmsql_stock.s_quantity FROM public.bmsql_stock_103384 bmsql_stock WHERE ((bmsql_stock.s_w_id OPERATOR(pg_catalog.=) 975) AND (bmsql_stock.s_quantity OPERATOR(|
            Tuple data received from node: 1 bytes                                                                                                                                                                                                                 |
            Node: host=127.0.0.1 port=13588 dbname=postgres                                                                                                                                                                                                        |
            ->  Aggregate  (cost=25597.32..25597.33 rows=1 width=8) (actual time=1.276..1.277 rows=1 loops=1)                                                                                                                                                      |
                  Output: count(*)                                                                                                                                                                                                                                 |
                  Buffers: shared hit=810                                                                                                                                                                                                                          |
                  ->  Nested Loop  (cost=7612.59..25597.14 rows=73 width=0) (actual time=0.389..1.272 rows=4 loops=1)                                                                                                                                              |
                        Inner Unique: true                                                                                                                                                                                                                         |
                        Buffers: shared hit=810                                                                                                                                                                                                                    |
                        ->  HashAggregate  (cost=7612.16..7646.24 rows=3408 width=4) (actual time=0.163..0.206 rows=186 loops=1)                                                                                                                                   |
                              Output: bmsql_order_line.ol_i_id                                                                                                                                                                                                     |
                              Group Key: bmsql_order_line.ol_i_id                                                                                                                                                                                                  |
                              Batches: 1  Memory Usage: 129kB                                                                                                                                                                                                      |
                              Buffers: shared hit=42                                                                                                                                                                                                               |
                              ->  Nested Loop  (cost=0.71..7603.64 rows=3408 width=4) (actual time=0.055..0.131 rows=189 loops=1)                                                                                                                                  |
                                    Output: bmsql_order_line.ol_i_id                                                                                                                                                                                               |
                                    Buffers: shared hit=42                                                                                                                                                                                                         |
                                    ->  Index Scan using bmsql_district_pkey_103191 on public.bmsql_district_103191 bmsql_district  (cost=0.27..8.30 rows=1 width=12) (actual time=0.014..0.014 rows=1 loops=1)                                                    |
                                          Output: bmsql_district.d_w_id, bmsql_district.d_id, bmsql_district.d_ytd, bmsql_district.d_tax, bmsql_district.d_next_o_id, bmsql_district.d_name, bmsql_district.d_street_1, bmsql_district.d_street_2, bmsql_district.d|
                                          Index Cond: ((bmsql_district.d_w_id = 975) AND (bmsql_district.d_id = 9))                                                                                                                                                |
                                          Buffers: shared hit=3                                                                                                                                                                                                    |
                                    ->  Index Scan using bmsql_order_line_pkey_103351 on public.bmsql_order_line_103351 bmsql_order_line  (cost=0.44..7561.26 rows=3408 width=16) (actual time=0.022..0.081 rows=189 loops=1)                                      |
                                          Output: bmsql_order_line.ol_w_id, bmsql_order_line.ol_d_id, bmsql_order_line.ol_o_id, bmsql_order_line.ol_number, bmsql_order_line.ol_i_id, bmsql_order_line.ol_delivery_d, bmsql_order_line.ol_amount, bmsql_order_line.|
                                          Index Cond: ((bmsql_order_line.ol_w_id = 975) AND (bmsql_order_line.ol_d_id = 9) AND (bmsql_order_line.ol_o_id >= (bmsql_district.d_next_o_id - 20)) AND (bmsql_order_line.ol_o_id < bmsql_district.d_next_o_id))        |
                                          Buffers: shared hit=39                                                                                                                                                                                                   |
                        ->  Index Scan using bmsql_stock_pkey_103384 on public.bmsql_stock_103384 bmsql_stock  (cost=0.43..5.27 rows=1 width=4) (actual time=0.006..0.006 rows=0 loops=186)                                                                        |
                              Output: bmsql_stock.s_w_id, bmsql_stock.s_i_id, bmsql_stock.s_quantity, bmsql_stock.s_ytd, bmsql_stock.s_order_cnt, bmsql_stock.s_remote_cnt, bmsql_stock.s_data, bmsql_stock.s_dist_01, bmsql_stock.s_dist_02, bmsql_stock.s_dist_03|
                              Index Cond: ((bmsql_stock.s_w_id = 975) AND (bmsql_stock.s_i_id = bmsql_order_line.ol_i_id))                                                                                                                                         |
                              Filter: (bmsql_stock.s_quantity < 12)                                                                                                                                                                                                |
                              Rows Removed by Filter: 1                                                                                                                                                                                                            |
                              Buffers: shared hit=768                                                                                                                                                                                                              |
                Planning Time: 0.755 ms                                                                                                                                                                                                                            |
                Execution Time: 1.498 ms                                                                                                                                                                                                                           |
    Planning:                                                                                                                                                                                                                                                      |
      Buffers: shared hit=3                                                                                                                                                                                                                                        |
    Planning Time: 0.324 ms                                                                                                                                                                                                                                        |
    Execution Time: 9.796 ms                                                                                                                                                                                                                                       |

      一般SQL,失真不算很严重。

    性能分析

    高可用

    CN成为瓶颈

    bypass-CN(direct-DN)模式

    存储过程、函数与视图、序列、自增、标识列等特性

    PostgreSQL SQL特性兼容性与限制

      分非分布式事务和分布式事务。

    使用benchmarksql进行TPC-C测试

       因为TPC-C所有的表都co-location到warehouse_id了,所以跑TPCC是没有问题的。只不过citus的重写着实有点蠢。如下:

    2021-10-07 21:21:47.037945T [239675] LOG:  duration: 97782.322 ms  execute <unnamed>: SELECT count(*) AS low_stock FROM (SELECT bmsql_stock.s_w_id, bmsql_stock.s_i_id, bmsql_stock.s_quantity FROM public.bmsql_stock_103379 bmsql_stock WHERE ((bmsql_stock.s_w_id OPERATOR(pg_catalog.=) $1) AND (bmsql_stock.s_quantity OPERATOR(pg_catalog.<) $2) AND (bmsql_stock.s_i_id OPERATOR(pg_catalog.=) ANY (SELECT bmsql_order_line.ol_i_id FROM (public.bmsql_district_103186 bmsql_district JOIN public.bmsql_order_line_103346 bmsql_order_line ON (((bmsql_order_line.ol_w_id OPERATOR(pg_catalog.=) bmsql_district.d_w_id) AND (bmsql_order_line.ol_d_id OPERATOR(pg_catalog.=) bmsql_district.d_id) AND (bmsql_order_line.ol_o_id OPERATOR(pg_catalog.>=) (bmsql_district.d_next_o_id OPERATOR(pg_catalog.-) 20)) AND (bmsql_order_line.ol_o_id OPERATOR(pg_catalog.<) bmsql_district.d_next_o_id)))) WHERE ((bmsql_district.d_w_id OPERATOR(pg_catalog.=) $3) AND (bmsql_district.d_id OPERATOR(pg_catalog.=) $4)))))) l
    2021-10-07 21:21:47.037945T [239675] DETAIL:  parameters: $1 = '974', $2 = '13', $3 = '974', $4 = '10'

      同时,citus到worker节点后,执行计划的效果很不理想。有些select count(1)执行居然要几十秒,在单机时只要及时毫秒。tpmC从20万掉下到6万。

    管理接口与管理工具

      除了标准的建表功能外,分布式数据库至少要支持:

      显示的广播接口,包括:到每个主worker节点,到每个主副worker节点,到每个主分片,到每个主副分片。

      显示的单播可用接口,包括:到任一worker节点,到任一分片。

      p14.6 Manual Query Propagation

    查询数据分布情况

    select * from pg_catalog.pg_dist_shard;   -- 查询所有表的分片名
    select * from pg_catalog.pg_dist_partition;    -- 查询所有
    select * from citus_tables ct;  -- 所有citus管理的表

    TPC-H测试

       citus对TPC-H的支持不太好,准确的是说复杂关联支持不好。但凡涉及到关联字段不包含分片键、没有co-location的几乎都不支持。如下:

    Vuser 1:Query Failed : select o_year, sum(case when nation = 'MOZAMBIQUE' then volume else 0 end) / sum(volume) as mkt_share from ( select extract(year from o_orderdate) as o_year, l_extendedprice * (1 - l_discount) as volume, n2.n_name as nation from part, supplier, lineitem, orders, customer, nation n1, nation n2, region where p_partkey = l_partkey and s_suppkey = l_suppkey and l_orderkey = o_orderkey and o_custkey = c_custkey and c_nationkey = n1.n_nationkey and n1.n_regionkey = r_regionkey and r_name = 'AFRICA' and s_nationkey = n2.n_nationkey and o_orderdate between date '1995-01-01' and date '1996-12-31' and p_type = 'STANDARD POLISHED STEEL') all_nations group by o_year order by o_year : ERROR: complex joins are only supported when all distributed tables are co-located and joined on their distribution columns
    Vuser 1:Query Failed : select cntrycode, count(*) as numcust, sum(c_acctbal) as totacctbal from ( select substr(c_phone, 1, 2) as cntrycode, c_acctbal from customer where substr(c_phone, 1, 2) in ('23', '32', '17', '18', '16', '20', '25') and c_acctbal > ( select avg(c_acctbal) from customer where c_acctbal > 0.00 and substr(c_phone, 1, 2) in ('23', '32', '17', '18', '16', '20', '25')) and not exists ( select * from orders where o_custkey = c_custkey)) custsale group by cntrycode order by cntrycode : ERROR: direct joins between distributed and local tables are not supported

      因为citus是插件化,注定了不可能和原生GP一样默认为分布式MPP而生。开启citus.enable_repartition_joins后,有10个语句默认跑不通。

    CITUS注意点

    postgres=# create table t_batch(id int primary key generated always as identity,d1 bigint,d2 bigint,d3 bigint);
    CREATE TABLE
    postgres=# SELECT create_distributed_table('t_batch','id');
    ERROR:  cannot distribute relation: t_batch
    DETAIL:  Distributed relations must not use GENERATED ... AS IDENTITY.

    但是bigserial居然支持?

    postgres=# create table t_batch(id bigserial primary key,d1 bigint,d2 bigint,d3 bigint);
    CREATE TABLE
    postgres=# SELECT create_distributed_table('t_batch','id');                             
     create_distributed_table 
    --------------------------
     
    (1 row)

    序列及序列作为默认值支持

    postgres=# alter table bmsql_history 
    postgres-#     alter column hist_id set default nextval('bmsql_hist_id_seq');
    ALTER TABLE
    postgres=# alter table bmsql_history add primary key (hist_id);   -- 约束必须加名字
    ERROR:  cannot create constraint without a name on a distributed table
    alter table bmsql_history add constraint bmsql_history_pkey primary key (hist_id);
    ERROR: cannot create constraint on "bmsql_history"
      Detail: Distributed relations cannot have UNIQUE, EXCLUDE, or PRIMARY KEY constraints that do not include the partition column (with an equality operator if EXCLUDE).
    postgres=# select pg_size_pretty(citus_relation_size('search_doc_new_ic'));
     pg_size_pretty 
    ----------------
     10045 MB
    (1 row)
    
    Time: 1.367 ms
    postgres=# select pg_size_pretty(citus_table_size('search_doc_new_ic'));   -- 不应该差这么多
     pg_size_pretty 
    ----------------
     216 GB
    (1 row)
    
    Time: 14.957 ms
    postgres=# select pg_size_pretty(citus_total_relation_size('search_doc_new_ic'));
     pg_size_pretty 
    ----------------
     243 GB
    (1 row)

    主外键限制

    tpch=# SELECT create_distributed_table('orders', 'o_orderkey');
    NOTICE:  Copying data from local table...
    NOTICE:  copying the data has completed
    DETAIL:  The local data in the table is no longer visible, but is still on disk.
    HINT:  To remove the local data, run: SELECT truncate_local_data_after_distributing_table($$public.orders$$)
    ERROR:  cannot create foreign key constraint since relations are not colocated or not referencing a reference table
    DETAIL:  A distributed table can only have foreign keys if it is referencing another colocated hash distributed table or a reference table
    tpch=# \dS+ orders
                                                     Table "public.orders"
         Column      |            Type             | Collation | Nullable | Default | Storage  | Stats target | Description 
    -----------------+-----------------------------+-----------+----------+---------+----------+--------------+-------------
     o_orderdate     | timestamp without time zone |           |          |         | plain    |              | 
     o_orderkey      | numeric                     |           | not null |         | main     |              | 
     o_custkey       | numeric                     |           | not null |         | main     |              | 
     o_orderpriority | character(15)               |           |          |         | extended |              | 
     o_shippriority  | numeric                     |           |          |         | main     |              | 
     o_clerk         | character(15)               |           |          |         | extended |              | 
     o_orderstatus   | character(1)                |           |          |         | extended |              | 
     o_totalprice    | numeric                     |           |          |         | main     |              | 
     o_comment       | character varying(79)       |           |          |         | extended |              | 
    Indexes:
        "orders_pk" PRIMARY KEY, btree (o_orderkey)
        "order_customer_fkidx" btree (o_custkey)
    Foreign-key constraints:
        "order_customer_fk" FOREIGN KEY (o_custkey) REFERENCES customer(c_custkey)
    Referenced by:
        TABLE "lineitem" CONSTRAINT "lineitem_order_fk" FOREIGN KEY (l_orderkey) REFERENCES orders(o_orderkey)
    Access method: heap
    
    
    NOTICE:  removing table public.lineitem from metadata as it is not connected to any reference tables via foreign keys
    
    tpch=# SELECT create_distributed_table('part', 'p_partkey');
    NOTICE:  Copying data from local table...
    NOTICE:  copying the data has completed
    DETAIL:  The local data in the table is no longer visible, but is still on disk.
    HINT:  To remove the local data, run: SELECT truncate_local_data_after_distributing_table($$public.part$$)
    ERROR:  cannot create foreign key constraint since foreign keys from reference tables and local tables to distributed tables are not supported
    DETAIL:  Reference tables and local tables can only have foreign keys to reference tables and local tables
  • 相关阅读:
    Cesium加载倾斜摄影数据
    CentOS7安装Docker
    Docker镜像下载
    c#验证密码强度
    配置阿里yum源
    ftpbat脚本
    powershell-ftpmove文件到本地
    Session Setup Request,NTLMSSP_AUTH, User:Dmainhostname$
    smblog
    树莓派显示器屏幕休眠
  • 原文地址:https://www.cnblogs.com/zhjh256/p/15200257.html
Copyright © 2011-2022 走看看