zoukankan      html  css  js  c++  java
  • Codeforces Round #631 (Div. 2)

    这场打的有点小开心呀,最后交过 T4 ,但是T3 的线段树居然炸了,也不知道是为啥....反正拿 (O(n)) 做法搞过去了....

    Problem A

    没什么好说的,随便瞎搞

    #include <bits/stdc++.h>
    
    using namespace std;
    
    template <typename T>
    inline T read()
    {
    	T x = 0;
    	char ch = getchar();
    	bool f = 0;
    	while(ch < '0' || ch > '9')
    	{
    		f = (ch == '-');
    		ch = getchar();
    	}
    	while(ch <= '9' && ch >= '0')
    	{
    		x = (x << 1) + (x << 3) + (ch - '0');
    		ch = getchar();
    	}
    	return  f? -x : x;
    }
    
    template <typename T>
    void put(T x)
    {
    	if(x < 0)
    	{
    		x = -x;
    		putchar('-');
    	}
    	if(x < 10) {
    		putchar(x + 48);
    		return;
    	}
    	put(x / 10);
    	putchar(x % 10 + 48);
    	return ;
    }
    
    #define rd read <int>
    #define pt(i) put <int> (i), putchar('
    ')
    #define ptY puts("YES")
    #define ptN puts("NO") 
    
    typedef long long ll;
    typedef double db;
    typedef long double ldb;
    typedef unsigned long long ull;
    typedef unsigned int ui;
    
    const int Maxn = 2e2 + 111;
    
    int x, t, n;
    
    bool flag[Maxn];
    
    int main()
    {
    #ifdef _DEBUG
    	freopen("in.txt", "r", stdin);
    #endif
    	t = rd();
    	while(t--)
    	{
    		memset(flag, 0, sizeof flag);
    		n = rd(); x = rd();
    		for(int i = 1; i <= n; ++i)
    			flag[rd()] = 1;
    		int len = 0;
    		while(x > 0 || flag[len + 1])
    		{
    			if(!flag[len + 1]) --x;
    			len++;
    		}
    		pt(len);
    	}
    	return 0;
    }
    

    Problem B

    这题吗,就是注意到 (Max_{ans} = 2),注意判一下两个一样

    #include <bits/stdc++.h>
    
    using namespace std;
    
    template <typename T>
    inline T read()
    {
    	T x = 0;
    	char ch = getchar();
    	bool f = 0;
    	while(ch < '0' || ch > '9')
    	{
    		f = (ch == '-');
    		ch = getchar();
    	}
    	while(ch <= '9' && ch >= '0')
    	{
    		x = (x << 1) + (x << 3) + (ch - '0');
    		ch = getchar();
    	}
    	return  f? -x : x;
    }
    
    template <typename T>
    void put(T x)
    {
    	if(x < 0)
    	{
    		x = -x;
    		putchar('-');
    	}
    	if(x < 10) {
    		putchar(x + 48);
    		return;
    	}
    	put(x / 10);
    	putchar(x % 10 + 48);
    	return ;
    }
    
    #define rd read <int>
    #define pt(i) put <int> (i), putchar('
    ')
    
    typedef long long ll;
    typedef double db;
    typedef long double ldb;
    typedef unsigned long long ull;
    typedef unsigned int ui;
    
    const int Maxn = 2e5 + 111;
    
    int t, a[Maxn], cnt[Maxn], n, max1, ans;
    
    int main()
    {
    #ifdef _DEBUG
    	freopen("in.txt", "r", stdin);
    #endif
    	t = rd();
    	while(t--)
    	{
    		n = rd();
    		max1 = 0;
    		for(int i = 1; i <= n; ++i)
    		{
    			a[i] = rd();
    			max1 = max(max1, a[i]);
    		}
    		memset(cnt, 0, sizeof cnt);
    		for(int i = 1; i <= max1; ++i) cnt[a[i]]++;
    		bool flag = 0;
    		ans = 0;
    		for(int i = 1; i <= max1; ++i)
    			if(cnt[i] != 1)
    			{
    				flag = 1;
    				break;
    			}
    		if(!flag)
    		{
    			memset(cnt, 0, sizeof cnt);
    			for(int i = max1 + 1; i <= n; ++i) cnt[a[i]]++;
    			for(int i = 1; i <= n - max1; ++i)
    				if(cnt[i] != 1)
    				{
    					flag = 1;
    					break;
    				}
    		}
    		ans += !flag;
    		bool flag1 = 0;
    		memset(cnt, 0, sizeof cnt);
    		for(int i = 1; i <= max1; ++i) cnt[a[n - i + 1]]++;
    		for(int i = 1; i <= max1; ++i) if(cnt[i] != 1) { flag1 = 1;break;}
    		if(!flag1)
    		{
    			memset(cnt, 0, sizeof cnt);
    			for(int i = 1; i <= n - max1; ++i) cnt[a[i]]++;
    			for(int i = 1; i <= n - max1; ++i)
    				if(cnt[i] != 1)
    				{
    					flag1 = 1;
    					break;
    				}
    		}
    		ans += !flag1;
    		if(!flag1 && !flag && n % 2 == 0 && max1== n / 2)
    		{
    			pt(1);
    			put(max1);
    			putchar(' ');
    			pt(n - max1);
    			continue;
    		}
    		pt(ans);
    		if(!flag)
    		{
    			put(max1);
    			putchar(' ');
    			pt(n - max1);
    		}
    		if(!flag1)
    		{
    			put(n - max1);
    			putchar(' ');
    			pt(max1);
    		}
    	}
    	return 0;
    }
    

    Problem C

    随便瞎搞就行了,考虑覆盖,记下起点与终点

    #include <bits/stdc++.h>
    
    using namespace std;
    
    template <typename T>
    inline T read() {
      T x = 0;
      char ch = getchar();
      bool f = 0;
      while (ch < '0' || ch > '9') {
        f = (ch == '-');
        ch = getchar();
      }
      while (ch <= '9' && ch >= '0') {
        x = (x << 1) + (x << 3) + (ch - '0');
        ch = getchar();
      }
      return f ? -x : x;
    }
    
    template <typename T>
    void put(T x) {
      if (x < 0) {
        x = -x;
        putchar('-');
      }
      if (x < 10) {
        putchar(x + 48);
        return;
      }
      put(x / 10);
      putchar(x % 10 + 48);
      return;
    }
    
    #define rd read<int>
    #define pt(i) put<int>(i), putchar(' ')
    
    typedef long long ll;
    typedef double db;
    typedef long double ldb;
    typedef unsigned long long ull;
    typedef unsigned int ui;
    const int Maxn = 2e5 + 111;
    
    int n, m, l[Maxn], p[Maxn], oo = 0;
    int main() {
      n = rd();
      m = rd();
      for (int i = 1; i <= m; ++i) l[i] = rd();
      int coo;
      for (int i = m; i >= 1; --i) {
        coo = min(l[i], n - oo - i + 1);
        if (coo <= 0) {
          printf("-1
    ");
          return 0;
    		}
        p[i] = max(1, oo + coo - l[i] + 1);
        oo = p[i] + l[i] - 1;
      }
      if (oo != n) {
        printf("-1");
        return 0;
    	}
      for (int i = 1; i <= m; ++i) pt(p[i]);
      return 0;
    }
    

    或说,我真正要说的是 D 题,说一个非常愉悦的 dp 想法

    Problem D

    考虑一个性质,我们可以证明

    定义 (p_(i))(a_i) 的位数(即最高位一)

    [p(i) > p(i - 1) ]

    只要满足这个就有题目条件成立,于是我们可以设计状态 (f[i][j]) 表示在 前 (i) 位的数里只选了 (j) 个,那么我们的所求即为 (sum_{1le i le cnt} f[cnt][i]) 。于是很显然的列出状态转移方程

    [f[i][j] = egin{cases} 0 & j = 0 \ f[i - 1][j - 1] * b[i] + f[i - 1][j] end{cases} ]

    其中,(b[i]) 表示 这一位中能选几个

    #include <bits/stdc++.h>
    
    using namespace std;
    
    template <typename T>
    inline T read()
    {
    	T x = 0;
    	char ch = getchar();
    	bool f = 0;
    	while(ch < '0' || ch > '9')
    	{
    		f = (ch == '-');
    		ch = getchar();
    	}
    	while(ch <= '9' && ch >= '0')
    	{
    		x = (x << 1) + (x << 3) + (ch - '0');
    		ch = getchar();
    	}
    	return  f? -x : x;
    }
    
    template <typename T>
    void put(T x)
    {
    	if(x < 0)
    	{
    		x = -x;
    		putchar('-');
    	}
    	if(x < 10) {
    		putchar(x + 48);
    		return;
    	}
    	put(x / 10);
    	putchar(x % 10 + 48);
    	return ;
    }
    
    #define rd read <long long>
    #define pt(i) put <long long> (i), putchar('
    ')
    
    typedef long long ll;
    typedef double db;
    typedef long double ldb;
    typedef unsigned long long ull;
    typedef unsigned int ui;
    
    const int Maxn = 111;
    
    ll b[40], n, d, f[Maxn][Maxn], cnt, t;
    
    bool flag;
    
    int main()
    {
    #ifdef _DEBUG
    	freopen("in.txt", "r", stdin);
    #endif
    	t = rd();
    	while(t--)
    	{
    		n = rd();
    		flag = 0;
    		d = rd();
    		b[1] = 1;
    		cnt = 1;
    		n -= 1;
    		for(int i = 1 + 1; i <= 31 && n > 0; ++i)
    		{
    			b[i] = b[i - 1] << 1;
    			n -= b[i];
    			if(n <= 0)
    			{
    				cnt = i;
    				b[i] += n;
    			}
    		}
    		f[0][0] = 1;
    		for(int i = 1; i <= cnt; ++i)
    		{
    			f[i][0] = 1;
    			for(int j = 1; j <= i; ++j)
    				f[i][j] = (f[i - 1][j - 1] * b[i] % d + f[i - 1][j]) % d;
    		}
    		ll ans = 0;
    		for(int i = 1; i <= cnt; ++i) ans = (ans + f[cnt][i]) % d;
    		pt(ans);
    	} 	
    	return 0;
    }
    

    这几场确实上分比较快,因为由于某种原因,打的人比较多...

  • 相关阅读:
    SpringBoot-07:SpringBoot整合PageHelper做多条件分页查询
    SpringBoot-06:SpringBoot增删改查一套完整的考试案例
    SpringBoot-05:SpringBoot初运行以及tomcat端口号的修改
    SpringBoot-04:SpringBoot在idea中的俩种创建方式
    SpringBoot-03:SpringBoot+Idea热部署
    SpringBoot-02:SpringBoot中的POM文件详细解释
    SpringBoot-01:什么是SpringBoot?
    SSM-Spring-23:概念《Spring中的事务是什么?》
    二叉查找树 & B(B-)树 & B+树 & B*树
    静态资源缓存与更新
  • 原文地址:https://www.cnblogs.com/zhltao/p/12630820.html
Copyright © 2011-2022 走看看