zoukankan      html  css  js  c++  java
  • OpenCV从入门到放弃系列之——如何扫描图像、利用查找表和计时

    目的

    • 如何遍历图像中的每一个像素?
    • OpenCV的矩阵值是如何存储的?
    • 如何测试我们所实现算法的性能?
    • 查找表是什么?为什么要用它?

    测试用例

    颜色空间缩减。具体做法就是:将现有颜色空间值除以某个输入值,以获得较少的颜色数。例如,颜色0到9可取为新值0,10到19可取为10。

    计算公式:
    Lnew = (Lold / 10) * 10

    如果对图像矩阵的每一个像素进行这个操作的话,是比较费时的,因为有大量的乘除操作。 这个时候我们的查找表就派上用场了,提前把值计算好,然后要用的时候,直接赋值即可。

    • 创建查找表
    int divideWith; // convert our input string to number - C++ style
    stringstream s;
    s << argv[2];
    s >> divideWith;
    if (!s) {
        cout << "Invalid number entered for dividing. " << endl; 
        return -1;
    }
        
    uchar table[256]; 
    for (int i = 0; i < 256; ++i)
    	table[i] = divideWith* (i/divideWith);
    
    • 计时

    具体用的是getTickCount()和getTickFrequency()两个函数。第一个函数返回的是CPU自某个事件以来走过的时钟周期数,第二个函数返回你的CPU一秒钟所走的时钟周期数。

    double t = (double)getTickCount();
    // 做点什么 ...
    t = ((double)getTickCount() - t)/getTickFrequency();
    cout << "Times passed in seconds: " << t << endl;
    

    1. 高效的方法 Efficient Way

    因为图像中的每个像素是可以顺序存储的,所以可以使用下标进行访问,访问前使用isContinuous()来判断矩阵是否连续存储的。

    Mat& ScanImageAndReduceC(Mat& I, const uchar* const table)
    {
        // accept only char type matrices
        CV_Assert(I.depth() != sizeof(uchar));     
    
        int channels = I.channels();
    
        int nRows = I.rows * channels; 
        int nCols = I.cols;
    
        if (I.isContinuous())
        {
            nCols *= nRows;
            nRows = 1;         
        }
    
        int i,j;
        uchar* p; 
        for( i = 0; i < nRows; ++i)
        {	
        	// 获取每一行开始的指针    	    	
            p = I.ptr<uchar>(i);
            for ( j = 0; j < nCols; ++j)
            {
                p[j] = table[p[j]];             
            }
        }
        return I; 
    }
    

    另外一种方法来实现遍历功能,就是使用data,data会从Mat中返回指向矩阵第一行第一列的指针。注意如果该指针为NULL则表明对象里面无输入,所以这是一种简单的检查图像是否被成功读入的方法。当矩阵是连续存储时,我们就可以通过遍历data来扫描整个图像。

    uchar* p = I.data;
    
    for( unsigned int i =0; i < ncol*nrows; ++i)
        *p++ = table[*p];
    

    2. 迭代法

    Mat& ScanImageAndReduceIterator(Mat& I, const uchar* const table)
    {
        // accept only char type matrices
        CV_Assert(I.depth() != sizeof(uchar));     
        
        const int channels = I.channels();
        switch(channels)
        {
        case 1: 
            {
                MatIterator_<uchar> it, end; 
                for( it = I.begin<uchar>(), end = I.end<uchar>(); it != end; ++it)
                    *it = table[*it];
                break;
            }
        case 3: 
            {
                MatIterator_<Vec3b> it, end; 
                for( it = I.begin<Vec3b>(), end = I.end<Vec3b>(); it != end; ++it)
                {
                    (*it)[0] = table[(*it)[0]];
                    (*it)[1] = table[(*it)[1]];
                    (*it)[2] = table[(*it)[2]];
                }
            }
        }
        
        return I; 
    }
    

    3. 通过相关返回值的On-the-fly地址计算

    Mat& ScanImageAndReduceRandomAccess(Mat& I, const uchar* const table)
    {
        // accept only char type matrices
        CV_Assert(I.depth() != sizeof(uchar));     
    
        const int channels = I.channels();
        switch(channels)
        {
        case 1: 
            {
                for( int i = 0; i < I.rows; ++i)
                    for( int j = 0; j < I.cols; ++j )
                        I.at<uchar>(i,j) = table[I.at<uchar>(i,j)];
                break;
            }
        case 3: 
            {
             Mat_<Vec3b> _I = I;
                
             for( int i = 0; i < I.rows; ++i)
                for( int j = 0; j < I.cols; ++j )
                   {
                       _I(i,j)[0] = table[_I(i,j)[0]];
                       _I(i,j)[1] = table[_I(i,j)[1]];
                       _I(i,j)[2] = table[_I(i,j)[2]];
                }
             I = _I;
             break;
            }
        }
        
        return I;
    }
    

    4. 核心函数LUT (The Core Function)

    operationsOnArrays:LUT() 包含于core module的函数,首先我们建立一个mat型用于查表:

     Mat lookUpTable(1, 256, CV_8U);
        uchar* p = lookUpTable.data; 
        for( int i = 0; i < 256; ++i)
            p[i] = table[i];
    

    然后我们调用函数(I是输入J是输出)

    LUT(I, lookUpTable, J);
    

    性能表现

    Efficient Way 79.4717 milliseconds

    Iterator 83.7201 milliseconds

    On-The-Fly RA 93.7878 milliseconds

    LUT function 32.5759 milliseconds

    结论:尽量使用OpenCV内置函数。调用LUT函数可以获得最快的速度。这是因为OpenCV库可以通过英特尔线程架构启用多线程。如果你喜欢使用指针的方法来扫描图像,迭代法是一个不错的选择,不过速度上较慢。

    四种方法完整的代码:

    #include <opencv2/core/core.hpp>
    #include <opencv2/highgui/highgui.hpp>
    #include <iostream>
    #include <sstream>
    
    using namespace std; 
    using namespace cv;
    
    void help()
    {
        cout
            << "
    --------------------------------------------------------------------------" << endl
            << "This program shows how to scan image objects in OpenCV (cv::Mat). As use case"
            << " we take an input image and divide the native color palette (255) with the "  << endl
            << "input. Shows C operator[] method, iterators and at function for on-the-fly item address calculation."<< endl
            << "Usage:"                                                                       << endl
            << "./howToScanImages imageNameToUse divideWith [G]"                              << endl
            << "if you add a G parameter the image is processed in gray scale"                << endl
            << "--------------------------------------------------------------------------"   << endl 
            << endl;
    }
    
    Mat& ScanImageAndReduceC(Mat& I, const uchar* table);
    Mat& ScanImageAndReduceIterator(Mat& I, const uchar* table);
    Mat& ScanImageAndReduceRandomAccess(Mat& I, const uchar * table);
    
    int main( int argc, char* argv[])
    {
        help(); 
        if (argc < 3)
        {
            cout << "Not enough parameters" << endl;
            return -1; 
        }
    
        Mat I, J;
        if( argc == 4 && !strcmp(argv[3],"G") )
            I = imread(argv[1], CV_LOAD_IMAGE_GRAYSCALE);
        else
            I = imread(argv[1], CV_LOAD_IMAGE_COLOR);
    
        if (!I.data)
        {
            cout << "The image" << argv[1] << " could not be loaded." << endl;
            return -1;
        }
    
        int divideWith; // convert our input string to number - C++ style
        stringstream s;
        s << argv[2];
        s >> divideWith;
        if (!s)
        {
            cout << "Invalid number entered for dividing. " << endl; 
            return -1;
        }
        
        uchar table[256]; 
        for (int i = 0; i < 256; ++i)
           table[i] = divideWith* (i/divideWith);
    
        const int times = 100; 
        double t;
    
        t = (double)getTickCount();    
        
        for (int i = 0; i < times; ++i)
            J = ScanImageAndReduceC(I.clone(), table);
    
        t = 1000*((double)getTickCount() - t)/getTickFrequency();
        t /= times;
    
        cout << "Time of reducing with the C operator [] (averaged for " 
             << times << " runs): " << t << " milliseconds."<< endl;  
    
        t = (double)getTickCount();    
    
        for (int i = 0; i < times; ++i)
            J = ScanImageAndReduceIterator(I.clone(), table);
    
        t = 1000*((double)getTickCount() - t)/getTickFrequency();
        t /= times;
    
        cout << "Time of reducing with the iterator (averaged for " 
            << times << " runs): " << t << " milliseconds."<< endl;  
    
        t = (double)getTickCount();    
    
        for (int i = 0; i < times; ++i)
            ScanImageAndReduceRandomAccess(I.clone(), table);
    
        t = 1000*((double)getTickCount() - t)/getTickFrequency();
        t /= times;
    
        cout << "Time of reducing with the on-the-fly address generation - at function (averaged for " 
            << times << " runs): " << t << " milliseconds."<< endl;  
    
        Mat lookUpTable(1, 256, CV_8U);
        uchar* p = lookUpTable.data; 
        for( int i = 0; i < 256; ++i)
            p[i] = table[i];
    
        t = (double)getTickCount();    
        
        for (int i = 0; i < times; ++i)
            LUT(I, lookUpTable, J);
    
        t = 1000*((double)getTickCount() - t)/getTickFrequency();
        t /= times;
    
        cout << "Time of reducing with the LUT function (averaged for " 
            << times << " runs): " << t << " milliseconds."<< endl;  
        return 0; 
    }
    
    Mat& ScanImageAndReduceC(Mat& I, const uchar* const table)
    {
        // accept only char type matrices
        CV_Assert(I.depth() != sizeof(uchar));     
    
        int channels = I.channels();
    
        int nRows = I.rows * channels; 
        int nCols = I.cols;
    
        if (I.isContinuous())
        {
            nCols *= nRows;
            nRows = 1;         
        }
    
        int i,j;
        uchar* p; 
        for( i = 0; i < nRows; ++i)
        {
            p = I.ptr<uchar>(i);
            for ( j = 0; j < nCols; ++j)
            {
                p[j] = table[p[j]];             
            }
        }
        return I; 
    }
    
    Mat& ScanImageAndReduceIterator(Mat& I, const uchar* const table)
    {
        // accept only char type matrices
        CV_Assert(I.depth() != sizeof(uchar));     
        
        const int channels = I.channels();
        switch(channels)
        {
        case 1: 
            {
                MatIterator_<uchar> it, end; 
                for( it = I.begin<uchar>(), end = I.end<uchar>(); it != end; ++it)
                    *it = table[*it];
                break;
            }
        case 3: 
            {
                MatIterator_<Vec3b> it, end; 
                for( it = I.begin<Vec3b>(), end = I.end<Vec3b>(); it != end; ++it)
                {
                    (*it)[0] = table[(*it)[0]];
                    (*it)[1] = table[(*it)[1]];
                    (*it)[2] = table[(*it)[2]];
                }
            }
        }
        
        return I; 
    }
    
    Mat& ScanImageAndReduceRandomAccess(Mat& I, const uchar* const table)
    {
        // accept only char type matrices
        CV_Assert(I.depth() != sizeof(uchar));     
    
        const int channels = I.channels();
        switch(channels)
        {
        case 1: 
            {
                for( int i = 0; i < I.rows; ++i)
                    for( int j = 0; j < I.cols; ++j )
                        I.at<uchar>(i,j) = table[I.at<uchar>(i,j)];
                break;
            }
        case 3: 
            {
             Mat_<Vec3b> _I = I;
                
             for( int i = 0; i < I.rows; ++i)
                for( int j = 0; j < I.cols; ++j )
                   {
                       _I(i,j)[0] = table[_I(i,j)[0]];
                       _I(i,j)[1] = table[_I(i,j)[1]];
                       _I(i,j)[2] = table[_I(i,j)[2]];
                }
             I = _I;
             break;
            }
        }
        
        return I;
    }
    
  • 相关阅读:
    内网安全隐藏通信隧道基础&&网络通信隧道之一ICMP隧道
    windows server2012 r2 .net framework 3.5失败
    awvas启动不起来解决方案
    Kali Linux解压包命令:
    kali linux 中python2不带pip的解决方法
    内网渗透信息收集
    团队作业(二):需求分析
    ORA00600: internal error code, arguments: [16513], [1403] 恢复
    helpyouhelpyou@cock.li 加密数据库恢复
    合成孔径雷达成像——算法与实现内容简要:第1章
  • 原文地址:https://www.cnblogs.com/zhonghuasong/p/6135669.html
Copyright © 2011-2022 走看看