zoukankan      html  css  js  c++  java
  • 论文笔记——MobileNets(Efficient Convolutional Neural Networks for Mobile Vision Applications)

    论文地址:MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications

    • MobileNet由Google提出的一种新的卷积计算方法,旨在加速卷积计算过程。
    • 为了减小网络模型大小,提出了两种比较暴力的裁剪方法。
      (1) 直接对channel进行裁剪,这种随机砍掉一些channel,也太暴力了吧,砍多了效果肯定不好,想想都知道。
      (2) 减少输入图像的分辨率,也就是减小输入的尺寸大小。
    • 我们还是关注新的卷积计算方法,要做压缩的话,还是另辟蹊径。

    1. Full convolution VS. Depthwise separable convolution

    1.1 Full convolution

    • M表示输入的channel, N表示输出的channel,Dk表示kernel size.
    • 我们可以看到输出的每一个channel,都跟所有的输入channel有关,也就是说,对于输出的一个channel,都是M个kernel与M个channel卷积以后的求和结果。
    • 差别就在这里!在depthwise separable中,每一个输出的channel,只和一个输入的channel有关。

    1.2 Depthwise separable convolution

    • 输入M个channel,那么输出也是M个channel,每一个channel都是由一个kernel在一个channel卷积以后得到的结果,不在是和所有的输入相关了。这也就是为什么名字叫做depthwise separable(深度级的分离,channel的分离)。

    • 但是我们发现输出只有M个channel,而我们想要输出N个channel,这个时候我们应该想到1*1的convolution,这个时候的卷积就是full convolution。这个时候输出的每一个channel都和输入有关了,相当于输入的加权求和。所以1x1的卷积有联合(combine)的作用。

    2. 计算量对比

    • 只要理解了两个的差别,不难算出计算直接的差别。

    • Dk表示kernel size, M表示输入的channel,也就是feature map的个数,N表示输出的channel。Df表示feature map的大小,也就是width和height, 上面这个式子再一次验证了我们上面说的,输出的每一个channel都和输入的所有channel有关。

    • 求和的左半部分,表示depthwise separable的计算量,可以看到输出为M个channel,每个输出channel只和一个channel有关。

    • 求和的有半部分,表示1x1 pointwise convolution,可以看到每一个输出channel,都和M个输入有关(M个输入的加权求和)。

    • 计算量较少比例

    3. 模型压缩

    上面公式可以看到直接对输入的M个channel进行的压缩(随机采样)

    上面公式可以看到对不仅对输出的channel进行了采样,对输入图像的分辨率也进行了减小。

    4. 对比实验

    4.1 参数量的对比

    4.2 实验结果

    5. 实现

    6. 总结

    • 根据实践经验的总结,这种新的卷积计算方式,对运算速度的改进还是比较明显的,精度影响不是很大,至于文中说的两个裁剪方法,我觉得还是慎重使用比较好。
    • 现在市面上已经有很多裁剪方法了,没必要用这么暴力的进行裁剪来压缩模型大小。
  • 相关阅读:
    02-MySQL的安装和管理
    01-pymysql模块的安装
    异常处理
    USACO 2015 Feb Censoring
    玄武密码(bzoj4327)(JSOI2012)
    浅谈AC自动机
    Equation
    JOI五子棋
    浅谈Tarjan
    年轮蛋糕JOI2014Final
  • 原文地址:https://www.cnblogs.com/zhonghuasong/p/7718685.html
Copyright © 2011-2022 走看看