zoukankan      html  css  js  c++  java
  • Python 建模步骤

    #%%
    #载入数据 、查看相关信息
    import pandas as pd
    import numpy as np
    from  sklearn.preprocessing import LabelEncoder
    
    print('第一步:加载、查看数据')
    
    file_path = r'D:	rain201905dataliwang.csv'
    
    band_data = pd.read_csv(file_path,encoding='UTF-8')
    
    band_data.info()
    
    band_data.shape
    
    #%%
    #
    print('第二步:清洗、处理数据,某些数据可以使用数据库处理数据代替')
    
    #数据清洗:缺失值处理:丢去、
    #查看缺失值
    band_data.isnull().sum
    
    band_data = band_data.dropna()
    #band_data = band_data.drop(['state'],axis=1)
    # 去除空格
    band_data['voice_mail_plan'] = band_data['voice_mail_plan'].map(lambda x: x.strip())
    band_data['intl_plan'] = band_data['intl_plan'].map(lambda x: x.strip())
    band_data['churned'] = band_data['churned'].map(lambda x: x.strip())
    band_data['voice_mail_plan'] = band_data['voice_mail_plan'].map({'no':0, 'yes':1})
    band_data.intl_plan = band_data.intl_plan.map({'no':0, 'yes':1})
    
    for column in band_data.columns:
        if band_data[column].dtype == type(object):
            le = LabelEncoder()
            band_data[column] = le.fit_transform(band_data[column])
    
    #band_data = band_data.drop(['phone_number'],axis=1)
    #band_data['churned'] = band_data['churned'].replace([' True.',' False.'],[1,0])
    #band_data['intl_plan'] = band_data['intl_plan'].replace([' yes',' no'],[1,0])
    #band_data['voice_mail_plan'] = band_data['voice_mail_plan'].replace([' yes',' no'],[1,0])
    
    
    #%%
    # 模型  [重复、调优]
    print('第三步:选择、训练模型')
    
    x = band_data.drop(['churned'],axis=1)
    y = band_data['churned']
    
    from sklearn import model_selection
    train,test,t_train,t_test = model_selection.train_test_split(x,y,test_size=0.3,random_state=1)
    
    from sklearn import tree
    model = tree.DecisionTreeClassifier(max_depth=2)
    model.fit(train,t_train)
    
    fea_res = pd.DataFrame(x.columns,columns=['features'])
    fea_res['importance'] = model.feature_importances_
    
    t_name= band_data['churned'].value_counts()
    t_name.index
    
    import graphviz
    
    import os
    os.environ["PATH"] += os.pathsep + r'D:softwaredevelopmentEnvironmentgraphviz-2.38
    eleasein'
    
    dot_data= tree.export_graphviz(model,out_file=None,feature_names=x.columns,max_depth=2,
                             class_names=t_name.index.astype(str),
                             filled=True, rounded=True,
                             special_characters=False)
    graph = graphviz.Source(dot_data)
    #graph
    graph.render("dtr")
    
    #%%
    print('第四步:查看、分析模型')
    
    #结果预测
    res = model.predict(test)
    
    #混淆矩阵
    from sklearn.metrics import confusion_matrix
    confmat = confusion_matrix(t_test,res)
    print(confmat)
    
    #分类指标 https://blog.csdn.net/akadiao/article/details/78788864
    from sklearn.metrics import classification_report
    print(classification_report(t_test,res))
    
    #%%
    print('第五步:保存模型')
    
    from sklearn.externals import joblib
    joblib.dump(model,r'D:	rain201905datamymodel.model')
    
    #%%
    print('第六步:加载新数据、使用模型')
    file_path_do = r'D:	rain201905datado_liwang.csv'
    
    deal_data = pd.read_csv(file_path_do,encoding='UTF-8')
    
    #数据清洗:缺失值处理
    
    deal_data = deal_data.dropna()
    deal_data['voice_mail_plan'] = deal_data['voice_mail_plan'].map(lambda x: x.strip())
    deal_data['intl_plan'] = deal_data['intl_plan'].map(lambda x: x.strip())
    deal_data['churned'] = deal_data['churned'].map(lambda x: x.strip())
    deal_data['voice_mail_plan'] = deal_data['voice_mail_plan'].map({'no':0, 'yes':1})
    deal_data.intl_plan = deal_data.intl_plan.map({'no':0, 'yes':1})
    
    for column in deal_data.columns:
        if deal_data[column].dtype == type(object):
            le = LabelEncoder()
            deal_data[column] = le.fit_transform(deal_data[column])
    #数据清洗
    
    #加载模型
    model_file_path = r'D:	rain201905datamymodel.model'
    deal_model = joblib.load(model_file_path)
    #预测
    res = deal_model.predict(deal_data.drop(['churned'],axis=1))
    
    #%%
    print('第七步:执行模型,提供数据')
    result_file_path = r'D:	rain201905data
    esult_liwang.csv'
    
    deal_data.insert(1,'pre_result',res)
    deal_data[['state','pre_result']].to_csv(result_file_path,sep=',',index=True,encoding='UTF-8')
  • 相关阅读:
    第十四周课程总结&实验报告(简单记事本的实现)
    第十三周课程总结
    第十二周
    第十一周课程总结
    第十周课程总结
    第九周课程总结&实验报告(七)
    第八周课程总结&实验报告(六)
    第七周课程总结&实验报告(五)
    第六周&java实验报告四
    全局变量
  • 原文地址:https://www.cnblogs.com/zhongyf/p/10911223.html
Copyright © 2011-2022 走看看