zoukankan      html  css  js  c++  java
  • 深度学习入门

    1.精通Tensorflow、Pytorch等深度学习框架。

    (1)安装ubuntu + anconda + jupter Notebook等工具。

    https://blog.csdn.net/White__Hacker/article/details/81066971?utm_medium=distribute.pc_relevant.none-task-blog-BlogCommendFromMachineLearnPai2-1.channel_param&depth_1-utm_source=distribute.pc_relevant.none-task-blog-BlogCommendFromMachineLearnPai2-1.channel_param

    https://zhuanlan.zhihu.com/p/69799707

    https://www.linuxidc.com/Linux/2018-01/150457.htm

    pytorch离线安装:
    https://blog.csdn.net/qq_36622009/article/details/104382740?utm_medium=distribute.pc_relevant.none-task-blog-BlogCommendFromMachineLearnPai2-1.channel_param&depth_1-utm_source=distribute.pc_relevant.none-task-blog-BlogCommendFromMachineLearnPai2-1.channel_param

    (2)cuda的安装配置。

    https://blog.csdn.net/wf19930209/article/details/81879514

    (3)熟悉Pytorch基本用法。

    Pytorch官网:
    autograd
    GPU
    backward
    torch.randn与numpy.random.randn
    pytorch动态计算图与tesorflow静态图比较
    nn
    optim
    控制流+权重共享

    yeild()函数:https://www.cnblogs.com/BigFishFly/p/6337081.html
    tuple vs list:https://www.cnblogs.com/still-smile/p/11586452.html

    Torchtext
    https://zhuanlan.zhihu.com/p/65833208
    https://www.jianshu.com/p/71176275fdc5

    einsum()函数
    https://blog.csdn.net/Eric_1993/article/details/105670381
    tuple()函数
    https://www.cnblogs.com/still-smile/p/11586452.html
    unsqueeze()函数:
    https://blog.csdn.net/flysky_jay/article/details/81607289
    DataLoader()函数
    https://www.cnblogs.com/ranjiewen/p/10128046.html

    embeding()函数
    https://www.cnblogs.com/lindaxin/p/7991436.html

    模型调优:
    conv用法:https://www.cnblogs.com/expttt/p/12397330.html
    模型参数申明 conv = torch.nn.Conv2d(1,8,(2,3),(1,1))
    模型调用 x = torch.randn(2,1,7,3)  conv(x)

    loss函数选择:BCELoss vs CrossEntropyLoss
    https://blog.csdn.net/rosefun96/article/details/88058708

    优化函数选择:Adam
    https://www.cnblogs.com/dylancao/p/9878978.html

    flatten()函数:https://blog.csdn.net/GhostintheCode/article/details/102530451

    Linear()函数:https://www.cnblogs.com/Archer-Fang/p/10645473.html

    argmax()函数:https://blog.csdn.net/weixin_43869268/article/details/107624108

    view()函数:https://www.jianshu.com/p/56402c641661

    求二分类标签结果:pred.data.max(1)[1]


    2.熟悉典型深度学习模型,使用场景及方法。



    3.熟悉分词、命名实体识别、文本分类、NLU。



  • 相关阅读:
    Scrapy snippets
    HttpClient4的cookie rejected问题,以及如何消除该warning输出
    简单的python smtp发邮件代码
    FTP服务器:Proftpd
    “当HTML5来敲门”专题沙龙杂记
    Titanium Mobile 1.6版本发布
    给同学们分享一些面试经验
    用CSS3实现动画进度条
    3天内构建Facebook Web应用的经验之谈
    仅用CSS创建立体旋转幻灯片
  • 原文地址:https://www.cnblogs.com/zhongzihao/p/13536691.html
Copyright © 2011-2022 走看看