zoukankan      html  css  js  c++  java
  • 斐波那契查找

    斐波那契查找

    斐波那契查找也是折半查找的一种改良版;斐波那契查找最主要的就是找mid这个点;

    在该种查找算法中,我们要找的mid这个点为数组中的黄金分割点,要求黄金分割点

    我们就要用到斐波那契数列了;我们可以看一下这个数列:1,1,2,3,5,8,13,21,34,55..........;

    可以看出俩个规律:

    1:从第三项开始每一项等于它的前两项的和;

    2:数列越往后,前后两项的比值越接近0.618,也就是黄金比例的比值;

    利用这两个规律我们就可以来找这个黄金分割点;我们令这个数组为F[],下标为k;

    斐波那契查找的核心就是在mid前面的长度为F[k-1]-1,在mid的后面的长度为F[k-2]-1;

    具体步骤:(记待查找的数组为A)

    1:构建斐波那契数组;

    2:找到n(A数组的长度)在斐波那契数组中的位置,并将数组补全(可用A(n-1)来补);

    3:计算mid=low+F(k-1)-1;

    4:如果A[mid]>key(key为要查找的数)high=mid-1;k=k-1;(mid前面的长度)

    5:如果A[mid[<key  low=mid+1;k=k-2(mid后面的长度);

    6:如果A[mid]=key &&mid<=high 则返回下标值(即mid的值);否则查找失败;

     

    #include<iostream>
    using namespace std;
    int max_size=20;
    void fbnq_list(int *A)//构建斐波那契数组; 
    {
        A[0]=A[1]=1;
        for(int i=2;i<20;i++)
        {
            A[i]=A[i-1]+A[i-2];
        }
    }
    int fbnq_search(int A[],int n,int key)
    {
        int F[max_size];
        fbnq_list(F);
        int low=0;
        int high=n-1;
        int mid=0;
        int k=0;
        while(n>F[k]-1)//找出n在斐波那契数列中的位置 
            k++;
        for(int i=n;i<F[k]-1;i++)//将数组补全,大于n的下标对于的数全部为A【high】; 
            A[i]=A[high];
        while(low<=high)
        {
            mid=low+F[k-1]-1;//mid的位置为黄金分割点; 
            if(A[mid]>key)
            {
                high=mid-1;
                k=k-1;//F[k-1]-1为mid前面的元素个数; 
            }
            else if(A[mid]<key)
            {
                low=mid+1;
                k=k-2;//F[k-1] -1为mid后面的元素个数; 
            }
         else
            {
                if(mid <= high)//如果为真则找到相应的位置
                    return mid;
                else
                    return -1;
            }
        }
        return -1;
        
    }
    int main()
    {
        int A[]={-1,2,3,45,54,78,95,102,158,458,1651,1656400};
        int key;
        cin>>key; 
        int x=fbnq_search(A,12,key);
        if(x!=-1) cout<<x;//输出所对应的下标; 
        else cout<<"没有该元素"; 
        return 0;
    }

    斐波那契查找是折半查找的升级版,那么也要求序列是有序的序列;

    在最坏情况下,斐波那契查找的时间复杂度还是O(log2n),且其期望复杂度也为O(log2n),

    但是与折半查找相比,斐波那契查找的优点是它只涉及加法和减法运算,而不用除法,

    而除法比加减法要占用更多的时间,因此,斐波那契查找的运行时间理论上比折半查找小,

    但是还是得视具体情况而定。

  • 相关阅读:
    java每日一学--数据校验20131008
    转载:正则表达式30分钟入门[1]
    【Java可移植性】编程规范每日一学--20130923
    【Java可移植性】编程规范每日一学--20130917
    【Java资源管理】编程规范每日一学--20130916
    瀑布流第二种方式————基于ajax方式
    瀑布流方式一
    JSONP跨域
    利用iframe和form上传和预览图片
    Ajax全套
  • 原文地址:https://www.cnblogs.com/zhoubo123/p/11302225.html
Copyright © 2011-2022 走看看