zoukankan
html css js c++ java
KNN算法--物以类聚,人以群分
KNN(K Nearest Neighbors,K近邻 )算法是机器学习所有算法中理论最简单,最好理解的。KNN是一种基于实例的学习,通过计算新数据与训练数据特征值之间的距离,然后选取K(K>=1)个距离最近的邻居进行分类判断(投票法)或者回归。如果K=1,那么新数据被简单分配给其近邻的类。KNN算法算是监督学习还是无监督学习呢?首先来看一下监督学习和无监督学习的定义。对于监督学习,数据都有明确的label(分类针对离散分布,回归针对连续分布),根据机器学习产生的模型可以将新数据分到一个明确的类或得到一个预测值。对于非监督学习,数据没有label,机器学习出的模型是从数据中提取出来的pattern(提取决定性特征或者聚类等)。例如聚类是机器根据学习得到的模型来判断新数据“更像”哪些原数据集合。KNN算法用于分类时,每个训练数据都有明确的label,也可以明确的判断出新数据的label,KNN用于回归时也会根据邻居的值预测出一个明确的值,因此KNN属于监督学习。
KNN算法的计算过程:
选择一种距离计算方式, 通过数据所有的特征计算新数据与已知类别数据集中的数据点的距离
按照距离递增次序进行排序,选取与当前距离最小的k个点
对于离散分类,返回k个点出现频率最多的类别作预测分类;对于回归则返回k个点的加权值作为预测值
来自为知笔记(Wiz)
查看全文
相关阅读:
eclipse(java windows)
Tomcat(Linux)
Tomcat(Windows)
MySql(Windows)
Java EE API
计算机网络-TCP三次握手理解
onclick 和click 的区别
js轮播图代码
JS轮播图制作
js动画原理
原文地址:https://www.cnblogs.com/zhoudayang/p/5058271.html
最新文章
C语言printf-(转自shiney)
strcpy和memcpy的区别-(转自stone Jin)
linux各文件夹的作用-(转自玉米疯收)
static在C/C++中的作用-(转自华山大师兄)
rpm命令的简介(2)-(转自 青春乐园 )
centos更新git
变量
类简介
for循环和while循环的区别
向流写入/读取数据
热门文章
开始
开始之前的随笔
osi模型和tcp/ip协议族
三级编制:子网划分
网络层的服务
Linux 下载文件命令(wget)
SQLyog 破解版
MySql 命令(命令行)
MySql(Linux)
eclipse(javaee windows)
Copyright © 2011-2022 走看看