zoukankan
html css js c++ java
KNN算法--物以类聚,人以群分
KNN(K Nearest Neighbors,K近邻 )算法是机器学习所有算法中理论最简单,最好理解的。KNN是一种基于实例的学习,通过计算新数据与训练数据特征值之间的距离,然后选取K(K>=1)个距离最近的邻居进行分类判断(投票法)或者回归。如果K=1,那么新数据被简单分配给其近邻的类。KNN算法算是监督学习还是无监督学习呢?首先来看一下监督学习和无监督学习的定义。对于监督学习,数据都有明确的label(分类针对离散分布,回归针对连续分布),根据机器学习产生的模型可以将新数据分到一个明确的类或得到一个预测值。对于非监督学习,数据没有label,机器学习出的模型是从数据中提取出来的pattern(提取决定性特征或者聚类等)。例如聚类是机器根据学习得到的模型来判断新数据“更像”哪些原数据集合。KNN算法用于分类时,每个训练数据都有明确的label,也可以明确的判断出新数据的label,KNN用于回归时也会根据邻居的值预测出一个明确的值,因此KNN属于监督学习。
KNN算法的计算过程:
选择一种距离计算方式, 通过数据所有的特征计算新数据与已知类别数据集中的数据点的距离
按照距离递增次序进行排序,选取与当前距离最小的k个点
对于离散分类,返回k个点出现频率最多的类别作预测分类;对于回归则返回k个点的加权值作为预测值
来自为知笔记(Wiz)
查看全文
相关阅读:
2.分布式锁
1. junit用法,before,beforeClass,test,after, afterClass的执行顺序
GC算法
记一次"截图"功能的前期调研过程!
程序员转行手册!
Yarn详细的工作流程
Yarn的三种调度器(Scheduler)
Hadoop序列化与Java序列化的区别
MapReduce执行过程
从普通登录到单点登录图例
原文地址:https://www.cnblogs.com/zhoudayang/p/5058271.html
最新文章
gulp常用插件汇总
web自动化开发环境配置详解
Gruntfile.js文件配置项
grunt搭建自动化的web前端开发环境(转)
mybatis如何接收字符串转换为date类型插入数据库
ResultSet..next()取不到第一条数据
springboot @Autowired注入为null
java.lang.NoSuchFieldError: REFLECTION
Cannot find any registered HttpDestinationFactory from the Bus.
mybatis 一个输入框进行多个字段进行模糊查询
热门文章
eclipse查看方法被谁引用(调用)的快捷键
eclipse选中无法高亮
mybatis之java.lang.UnsupportedOperationException
10. 两个Integer的引用对象传给一个swap方法在方法内部交换引用,返回后,两个引用的值是否会发现变化
9. java内存模型,垃圾回收机制,不可达算法
7. hashmap的底层实现
6. sleep和wait的区别
5. 线程的状态,和线程的阻塞方式
4. 用hashmap实现redis有什么问题
3.nginx的请求转发算法,如何配置根据权重转发
Copyright © 2011-2022 走看看