zoukankan      html  css  js  c++  java
  • 最大子组问题

    #include "stdafx.h"
    #include  <stdio.h>


    typedef struct Result
    {
        Result():low(0), high(0), sum(0){}
        Result(int lowVal, int highVal, int sumVal) : low(lowVal)
        , high(highVal), sum(sumVal) {}
        int low;
        int high;
        int sum;
    }Result;

    Result findMaxCrossArray(int* arr, int low, int mid, int high)
    {
        int crossleft = 0;
        int crossright = 0;
        int crossSum = 0;
        int leftSum = -0xffff;
        int sum = 0;
        for (int i = mid; i >= low; i--)
        {
            sum += arr[i];
            if (sum > leftSum)
            {
                leftSum = sum;
                crossleft = i;
            }
        }

        int rightsum = -0xffff;
        sum = 0;
        for (int j = mid + 1; j <= high; j++)
        {
            sum += arr[j];
            if (sum > leftSum)
            {
                rightsum = sum;
                crossright = j;
            }
        }

        return Result(crossleft, crossright, leftSum + rightsum);
    }

    Result findMaxMumSubArray(int* a, int low, int high)
    {
        printf("called findMaxMumSubArray>> Low:%d, High:%d ", low, high);
        Result* pResult = &Result();

        if (low == high)
        {
            pResult = &Result(low, high, a[low]);
            printf("oneItem------>low:%d, high:%d, sum:%d ", pResult->low, pResult->high, pResult->sum);
        }
        else
        {
            int mid = (low + high) / 2;

            Result leftResult = findMaxMumSubArray(a, low, mid);
            printf("left------>low:%d, high:%d, sum:%d ", leftResult.low, leftResult.high, leftResult.sum);
            Result rightResult = findMaxMumSubArray(a, mid + 1, high);
            printf("right------>low:%d, high:%d, sum:%d ", rightResult.low, rightResult.high, rightResult.sum);
            Result crossResult = findMaxCrossArray(a, low, mid, high);
            printf("cross------>low:%d, high:%d, sum:%d ", crossResult.low, crossResult.high, crossResult.sum);
            if (leftResult.sum >= rightResult.sum && leftResult.sum >= crossResult.sum)
            {
                pResult = &leftResult;
            }
            else if (rightResult.sum >= leftResult.sum && rightResult.sum >= crossResult.sum)
            {
                pResult = &rightResult;
            }
            else
                pResult = &crossResult;
        }

        printf(">>>>>>>>>result------>low:%d, high:%d, sum:%d ", pResult->low, pResult->high, pResult->sum);
        return *pResult;
        
    }

    int _tmain(int argc, _TCHAR* argv[])
    {
        int arr[] = { 13, -3, -25, 20, -3, -16, -23, 18, 20, -7, 12, -5, -22, 15, -4, 7 };
        Result r = findMaxMumSubArray(arr, 0, 15);
        printf("low:%d, high:%d, sum:%d ", r.low, r.high, r.sum);
        getchar();
        return 0;
    }

    -----------------------------------------------------------------------------

    输出:

    -------------------------------------------------------------------------------

    called findMaxMumSubArray>> Low:0, High:15
    called findMaxMumSubArray>> Low:0, High:7
    called findMaxMumSubArray>> Low:0, High:3
    called findMaxMumSubArray>> Low:0, High:1
    called findMaxMumSubArray>> Low:0, High:0
    oneItem------>low:0, high:0, sum:13
    >>>>>>>>>result------>low:0, high:0, sum:13
    left------>low:0, high:0, sum:13
    called findMaxMumSubArray>> Low:1, High:1
    oneItem------>low:1, high:1, sum:-3
    >>>>>>>>>result------>low:1, high:1, sum:-3
    right------>low:1, high:1, sum:-3
    cross------>low:0, high:0, sum:-65522
    >>>>>>>>>result------>low:0, high:0, sum:13
    left------>low:0, high:0, sum:13
    called findMaxMumSubArray>> Low:2, High:3
    called findMaxMumSubArray>> Low:2, High:2
    oneItem------>low:2, high:2, sum:-25
    >>>>>>>>>result------>low:2, high:2, sum:-25
    left------>low:2, high:2, sum:-25
    called findMaxMumSubArray>> Low:3, High:3
    oneItem------>low:3, high:3, sum:20
    >>>>>>>>>result------>low:3, high:3, sum:20
    right------>low:3, high:3, sum:20
    cross------>low:2, high:3, sum:-5
    >>>>>>>>>result------>low:3, high:3, sum:20
    right------>low:3, high:3, sum:20
    cross------>low:0, high:0, sum:-65525
    >>>>>>>>>result------>low:3, high:3, sum:20
    left------>low:3, high:3, sum:20
    called findMaxMumSubArray>> Low:4, High:7
    called findMaxMumSubArray>> Low:4, High:5
    called findMaxMumSubArray>> Low:4, High:4
    oneItem------>low:4, high:4, sum:-3
    >>>>>>>>>result------>low:4, high:4, sum:-3
    left------>low:4, high:4, sum:-3
    called findMaxMumSubArray>> Low:5, High:5
    oneItem------>low:5, high:5, sum:-16
    >>>>>>>>>result------>low:5, high:5, sum:-16
    right------>low:5, high:5, sum:-16
    cross------>low:4, high:0, sum:-65538
    >>>>>>>>>result------>low:4, high:4, sum:-3
    left------>low:4, high:4, sum:-3
    called findMaxMumSubArray>> Low:6, High:7
    called findMaxMumSubArray>> Low:6, High:6
    oneItem------>low:6, high:6, sum:-23
    >>>>>>>>>result------>low:6, high:6, sum:-23
    left------>low:6, high:6, sum:-23
    called findMaxMumSubArray>> Low:7, High:7
    oneItem------>low:7, high:7, sum:18
    >>>>>>>>>result------>low:7, high:7, sum:18
    right------>low:7, high:7, sum:18
    cross------>low:6, high:7, sum:-5
    >>>>>>>>>result------>low:7, high:7, sum:18
    right------>low:7, high:7, sum:18
    cross------>low:5, high:7, sum:-21
    >>>>>>>>>result------>low:7, high:7, sum:18
    right------>low:7, high:7, sum:18
    cross------>low:3, high:0, sum:-65515
    >>>>>>>>>result------>low:3, high:3, sum:20
    left------>low:3, high:3, sum:20
    called findMaxMumSubArray>> Low:8, High:15
    called findMaxMumSubArray>> Low:8, High:11
    called findMaxMumSubArray>> Low:8, High:9
    called findMaxMumSubArray>> Low:8, High:8
    oneItem------>low:8, high:8, sum:20
    >>>>>>>>>result------>low:8, high:8, sum:20
    left------>low:8, high:8, sum:20
    called findMaxMumSubArray>> Low:9, High:9
    oneItem------>low:9, high:9, sum:-7
    >>>>>>>>>result------>low:9, high:9, sum:-7
    right------>low:9, high:9, sum:-7
    cross------>low:8, high:0, sum:-65515
    >>>>>>>>>result------>low:8, high:8, sum:20
    left------>low:8, high:8, sum:20
    called findMaxMumSubArray>> Low:10, High:11
    called findMaxMumSubArray>> Low:10, High:10
    oneItem------>low:10, high:10, sum:12
    >>>>>>>>>result------>low:10, high:10, sum:12
    left------>low:10, high:10, sum:12
    called findMaxMumSubArray>> Low:11, High:11
    oneItem------>low:11, high:11, sum:-5
    >>>>>>>>>result------>low:11, high:11, sum:-5
    right------>low:11, high:11, sum:-5
    cross------>low:10, high:0, sum:-65523
    >>>>>>>>>result------>low:10, high:10, sum:12
    right------>low:10, high:10, sum:12
    cross------>low:8, high:0, sum:-65522
    >>>>>>>>>result------>low:8, high:8, sum:20
    left------>low:8, high:8, sum:20
    called findMaxMumSubArray>> Low:12, High:15
    called findMaxMumSubArray>> Low:12, High:13
    called findMaxMumSubArray>> Low:12, High:12
    oneItem------>low:12, high:12, sum:-22
    >>>>>>>>>result------>low:12, high:12, sum:-22
    left------>low:12, high:12, sum:-22
    called findMaxMumSubArray>> Low:13, High:13
    oneItem------>low:13, high:13, sum:15
    >>>>>>>>>result------>low:13, high:13, sum:15
    right------>low:13, high:13, sum:15
    cross------>low:12, high:13, sum:-7
    >>>>>>>>>result------>low:13, high:13, sum:15
    left------>low:13, high:13, sum:15
    called findMaxMumSubArray>> Low:14, High:15
    called findMaxMumSubArray>> Low:14, High:14
    oneItem------>low:14, high:14, sum:-4
    >>>>>>>>>result------>low:14, high:14, sum:-4
    left------>low:14, high:14, sum:-4
    called findMaxMumSubArray>> Low:15, High:15
    oneItem------>low:15, high:15, sum:7
    >>>>>>>>>result------>low:15, high:15, sum:7
    right------>low:15, high:15, sum:7
    cross------>low:14, high:15, sum:3
    >>>>>>>>>result------>low:15, high:15, sum:7
    right------>low:15, high:15, sum:7
    cross------>low:13, high:0, sum:-65520
    >>>>>>>>>result------>low:13, high:13, sum:15
    right------>low:13, high:13, sum:15
    cross------>low:8, high:0, sum:-65515
    >>>>>>>>>result------>low:8, high:8, sum:20
    right------>low:8, high:8, sum:20
    cross------>low:7, high:11, sum:38
    >>>>>>>>>result------>low:7, high:11, sum:38
    low:7, high:11, sum:38

    -----------------------------------------------------------------------------------------

    问题描述:
            给定一只股票在某段时间内的历史价格变化曲线,找出一个能够实现收益最大化的时间段。

    理解:
            为找出最大化的收益,需要考虑的是在买进和卖出时的价格变化幅度,因此从该股票的每日变化幅度来考虑问题比较合适。由此,可以将上述问题稍作变形:给定一只股票在某段时间内的每日变化幅度,找出一个合适的买进和卖出时间,以实现收益最大化。因此,将输入数据转换如下,并试图在整个时间段中找到一个累加和最大的子区间,亦即最大子数组。

    0 1 2 3 4
    价格 10 11 7 10 6
    变化   1 -4 3 -4


    暴力求解方法:
            首先能够想到的是在一个给定数组(区间)中,其子数组(子区间)的个数是C(2,n),很容易就能遍历完所有子数组从而找出最大的那个,其最坏情况渐进时间复杂度是Θ(n2)。假设每日变化幅度保存在数组A中(A的下标从1到n),A.length表示A的元素个数,最终结果以元组形式返回;给出伪码如下:
            BRUTE_FORCE(A)
                i = 1
                sum = -infinity
                for i <= A.length, inc by 1
                    j = i
                    last_sum = 0
                    for j <= A.length, inc by 1
                        last_sum += A[j]
                        if last_sum > sum
                            sum = last_sum
                            start = i
                            end = j
                return (start, end, sum)


    分治求解方法:
            上述方法的渐进时间复杂度差强人意。类比于归并排序,有时采用分治策略能够获得更好的时间复杂度。分治策略通常包含分解成子问题、解决子问题、合并子问题。由此可以推出大致的解决思路:首先依然假设数据输入如上一个方法那样,然后考虑将A[1...n]拆分为规模大致相同的两个子数组left[1...mid]和right[mid+1...n],其中mid=(1+n)/2向下取整,那么可以肯定,最大子数组要么在这两个子数组中,要么横跨这两个子数组,因此可以分别求解这三种情况,取其中最大的子数组并返回即可。
            对于left/right子数组可递归求解,而对于横跨两个子数组的情况,如果能够使得该情况下的求解时间复杂度为O(n),那么应该能让整体的最坏时间复杂度低于Θ(n2)。如果仅仅是通过遍历所有包含A[mid]和A[mid+1]的子数组来找最大子数组,那么很显然仅求解该情况就需要Θ(n2)的时间。可以推断横跨两个子数组的最大子数组,必须由两个分别在left/right中的子数组组成,这两个子数组在分别包含了A[mid]和A[mid+1]的所有子数组中是最大的;因为如果存在一个不满足上述条件的最大子数组,那么总可以用上述方法找到一个更大的子数组。
            根据上述思路,很容易推知求解横跨两个子数组的情况只需要O(n)的时间。由此给出伪码如下:
            (1)子过程:找出横跨两个子数组的最大子数组
                FIND_CROSSING_MAX_SUBARRAY(A, low, mid, high)
                    left_sum = -infinity
                    sum = 0
                    i = mid
                    for i >= low, dec by 1
                        sum += A[i]
                        if sum > left_sum
                            left_sum = sum
                            left_index = i
                    
                    right_sum = -infinity
                    sum = 0
                    i = mid + 1
                    for i <= high, inc by 1
                        sum += A[i]
                        if sum > right_sum
                            right_sum = sum
                            right_index = i
                    return (left_index, right_index, left_sum+right_sum)
            
            (2)主过程:分治法找出最大子数组
                FIND_MAX_SUBARRAY(A, low, high)
                    if low == high
                        return (low, high, A[low])
                    else
                        mid = down_trunc((low + high) / 2)
                        (left_start, left_end, left_sum) =
                            FIND_MAX_SUBARRAY(A, low, mid)
                        (right_start, right_end, right_sum) =
                            FIND_MAX_SUBARRAY(A, mid+1, high)
                        (cross_start, cross_end, cross_sum) =
                            FIND_CROSSING_MAX_SUBARRAY(A, low, mid, high)
                        
                        if left_sum > right_sum and left_sum > cross_sum
                            return (left_start, left_end, left_sum)
                        else if right_sum > left_sum and right_sum > cross_sum
                            return (right_start, right_end, right_sum)
                        else
                            return (cross_start, cross_end, cross_sum)
            可以看出上述算法渐进时间复杂度为Θ(nlg(n))。


    缩减问题规模的方法:
            在查找过程中,是否可以根据现有的信息,来缩减需要排查的子数组个数,进而获得更好的时间复杂度呢?一个思路是不再重复检查以前累加过的元素,即从左至右累加元素,保存其中的最大子数组,如果在加入一个元素后累加和为负数,则从该元素的后一个元素重新累加,直至整个数组遍历完毕。该思路有效的前提是证明以下几个假设:

    1. 可以将最大子数组来源分为三种:已经遍历完的数组部分、未遍历的数组部分以及跨越这两部分的子数组
    2. 可以假设当从左至右累加直至累加和为负,所得的最大子数组是当前已遍历完的数组部分中最大的
    3. 可以假设当累加和为负时,潜在的最大子数组不可能从该元素或该元素左边的元素开始

            假设1不证自明。
            假设从A[1]累加到A[i]时第一次遇到其累加和为负(1<=i<=n),那么A[i]一定为负,且A[1]+...+A[i-1]>=0。当i<=2时,显然此时假设2成立。当i>2时,可以认为在A[1]...A[i]中,所有子数组可分为三种:从A[1]开始向右拓展、从A[i]开始向左拓展以及不包含A[1]和A[i]的中间子数组;显然从A[i]向左拓展的不可能是最大子数组,而如果不包含A[1]和A[i]的中间子数组是最大子数组,那么可以使该中间子数组加上其左边的部分构成一个新的子数组,而且该子数组总是大于等于这个中间子数组,因为其左边部分总是大于等于0,所以该情况下假设2也得证。综合来看假设2是成立的。
            对于假设3,显然潜在的最大子数组不可能从A[i]开始,因为A[i]<0。当潜在的最大子数组从A[i]的左边开始时,假设其从A[j]开始(1<=j<i)。显然j不能等于1,因为A[1]+...+A[i]<0;当j>1时,A[j]+...+A[i]一定是负数,因为A[1]+...+A[j-1]一定大于等于0而A[1]+...+A[i]一定为负。所以综合来看,从A[i]或者A[i]的左边寻找潜在的子数组是没有意义的。
            伪码如下,时间复杂度为Θ(n)。对于全部是负数的情况,特殊处理即可,不影响时间复杂度。
            LINEAR_SEARCH_MAX_SUBARRAY(A)
                sum = -infinity
                start = 0
                end = 0

                cur_sum = 0
                cur_start_index = 1

                i = 1
                for i <= A.length, inc by 1
                    cur_sum += A[i]
                    if cur_sum < 0
                        cur_sum = 0
                        cur_start_index = i + 1
                    else
                        if sum < cur_sum
                            sum = cur_sum
                            start = cur_start_index
                            end = i

                return (start, end, sum)

    一点一滴的积累,这就是我的路。
  • 相关阅读:
    Gridview鼠标移动到数据行时改变该数据行的背景色
    利用SQL或存储过程实现GridView分页
    ObjectDataSource“odbList”未能找到接受“MyBookShop.Model.Admin”类型的参数的非泛型方法“DeleteAdmin”。
    Apache服务器主配置文件全中文注释
    MVC简介
    MOSS 2007 部署Feature脚本
    在线视频点播
    yui 与 jQuery
    解决MOSS2007 单点登陆 设置错误“您没有执行此操作的权限”
    【转发】外企面试常用的英文问题及高分回答
  • 原文地址:https://www.cnblogs.com/zhoug2020/p/14241736.html
Copyright © 2011-2022 走看看