zoukankan      html  css  js  c++  java
  • TensorFlow学习系列(四):minist实例--卷积神经网络

    参考:深入MNIST

    全部代码:

    # -*- coding: utf-8 -*-
    import tensorflow as tf 
    import tensorflow.examples.tutorials.mnist.input_data as input_data
    mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)     #下载并加载mnist数据
    x = tf.placeholder(tf.float32, [None, 784])                        #输入的数据占位符
    y_actual = tf.placeholder(tf.float32, shape=[None, 10])            #输入的标签占位符
    
    #定义一个函数,用于初始化所有的权值 W
    def weight_variable(shape):
      initial = tf.truncated_normal(shape, stddev=0.1)
      return tf.Variable(initial)
    
    #定义一个函数,用于初始化所有的偏置项 b
    def bias_variable(shape):
      initial = tf.constant(0.1, shape=shape)
      return tf.Variable(initial)
      
    #定义一个函数,用于构建卷积层
    def conv2d(x, W):
      return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')
    
    #定义一个函数,用于构建池化层
    def max_pool(x):
      return tf.nn.max_pool(x, ksize=[1, 2, 2, 1],strides=[1, 2, 2, 1], padding='SAME')
    
    #构建网络
    x_image = tf.reshape(x, [-1,28,28,1])         #转换输入数据shape,以便于用于网络中
    W_conv1 = weight_variable([5, 5, 1, 32])      
    b_conv1 = bias_variable([32])       
    h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)     #第一个卷积层
    h_pool1 = max_pool(h_conv1)                                  #第一个池化层
    
    W_conv2 = weight_variable([5, 5, 32, 64])
    b_conv2 = bias_variable([64])
    h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)      #第二个卷积层
    h_pool2 = max_pool(h_conv2)                                   #第二个池化层
    
    W_fc1 = weight_variable([7 * 7 * 64, 1024])
    b_fc1 = bias_variable([1024])
    h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64])              #reshape成向量
    h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)    #第一个全连接层
    
    keep_prob = tf.placeholder("float") 
    h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)                  #dropout层
    
    W_fc2 = weight_variable([1024, 10])
    b_fc2 = bias_variable([10])
    y_predict=tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2)   #softmax层
    
    cross_entropy = -tf.reduce_sum(y_actual*tf.log(y_predict))     #交叉熵
    train_step = tf.train.GradientDescentOptimizer(1e-3).minimize(cross_entropy)    #梯度下降法
    correct_prediction = tf.equal(tf.argmax(y_predict,1), tf.argmax(y_actual,1))    
    accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))                 #精确度计算
    sess=tf.InteractiveSession()                          
    sess.run(tf.initialize_all_variables())
    for i in range(20000):
      batch = mnist.train.next_batch(50)
      if i%100 == 0:                  #训练100次,验证一次
        train_acc = accuracy.eval(feed_dict={x:batch[0], y_actual: batch[1], keep_prob: 1.0})
        print('step',i,'training accuracy',train_acc)
        train_step.run(feed_dict={x: batch[0], y_actual: batch[1], keep_prob: 0.5})
    
    test_acc=accuracy.eval(feed_dict={x: mnist.test.images, y_actual: mnist.test.labels, keep_prob: 1.0})
    print("test accuracy",test_acc)
  • 相关阅读:
    js 基础(面试前必看)
    typescript 使用的几种情况
    flutter 命令卡主的问题
    React 通过注释自动生成文档
    jest 测试入门(一)
    react hooks 全面转换攻略(三) 全局存储解决方案
    缓存穿透、击穿、雪崩区别和解决方案
    java8 lambda表达式
    maven中snapshot快照库和release发布库的区别和作用
    初识 Nacos 以及安装
  • 原文地址:https://www.cnblogs.com/zhoulixue/p/6439100.html
Copyright © 2011-2022 走看看