zoukankan      html  css  js  c++  java
  • BSGS算法总结

    BSGS算法总结

    (BSGS)算法(Baby Step Giant Step),即大步小步算法,用于解决这样一个问题:
    (y^xequiv z (mod p))的最小正整数解。
    前提条件是((y,p)=1)

    我们选定一个大步长(m=sqrt p + 1),设(x=am+b),那么显然有(a,bin[0,m))。这样就有(y^{am+b}equiv z (mod p)),就有((y^m)^a=z*y^{-b} (mod p))

    但是这个逆元看起来很不爽,所以我们重新设(x=am-b),那么就有((y^m)^aequiv z*y^b (mod p))。这时候是(ain[1,m],bin[0.m))

    具体实现方法:

    分别计算出(z*y^0,z*y^1...z*y^{m-1})。把算出来的这些东西放到一个表里面,这里用(map)(hash)都是可以的。(显然(hash)跑得比(map)快到不知道哪里去了)

    然后对于(iin[1,m])计算((y^m)^i),查一下表看这个数是不是已经被算出来了。

    能算出来就能直接输出解了。

    [SDOI2011]计算器

    #include<cstdio>
    #include<algorithm>
    #include<cmath>
    #include<map>
    using namespace std;
    int gi()
    {
    	int x=0,w=1;char ch=getchar();
    	while ((ch<'0'||ch>'9')&&ch!='-') ch=getchar();
    	if (ch=='-') w=0,ch=getchar();
    	while (ch>='0'&&ch<='9') x=(x<<3)+(x<<1)+ch-'0',ch=getchar();
    	return w?x:-x;
    }
    map<int,int>M;
    int fastpow(int a,int b,int mod)
    {
    	int res=1;
    	while (b) {if (b&1) res=1ll*res*a%mod;a=1ll*a*a%mod;b>>=1;}
    	return res;
    }
    int main()
    {
    	int T=gi(),K=gi();
    	while (T--)
    	{
    		int y=gi(),z=gi(),p=gi();
    		if (K==1) printf("%d
    ",fastpow(y,z,p));
    		if (K==2)
    		{
    			if (y%p==0&&z%p) puts("Orz, I cannot find x!");
    			else printf("%lld
    ",1ll*fastpow(y,p-2,p)*z%p);
    		}
    		if (K==3)
    		{
    			if (y%p==0) {puts("Orz, I cannot find x!");continue;}
    			y%=p;z%=p;
    			int m=sqrt(p)+1,fg=0;M.clear();
    			for (int i=0,t=z;i<=m;++i,t=1ll*t*y%p) M[t]=i;
    			for (int i=1,tt=fastpow(y,m,p),t=tt;i<=m;++i,t=1ll*t*tt%p)
    				if (M.count(t)) {printf("%d
    ",i*m-M[t]);fg=1;break;}
    			if (!fg) puts("Orz, I cannot find x!");
    		}
    	}
    	return 0;
    }
    

    扩展BSGS

    如果((y,p) eq 1?)
    考虑(y*y^{x-1}+k*p=z)(注意这里是等号不是同余)
    根据扩展欧几里得的那套理论,当(z)不是((y,p))的因数的时候就会无解。
    否则设(d=(y,p)),那么就会有(frac yd y^{x-1}+k*frac pd=frac zd)
    不断递归下去,直至(d=1)。接下来就可以套用普通的(BSGS)了。
    Spoj3105 Mod

    #include<cstdio>
    #include<algorithm>
    #include<cmath>
    #include<map>
    using namespace std;
    int gi()
    {
    	int x=0,w=1;char ch=getchar();
    	while ((ch<'0'||ch>'9')&&ch!='-') ch=getchar();
    	if (ch=='-') w=0,ch=getchar();
    	while (ch>='0'&&ch<='9') x=(x<<3)+(x<<1)+ch-'0',ch=getchar();
    	return w?x:-x;
    }
    int y,z,p,ans;map<int,int>M;
    int gcd(int a,int b){return b?gcd(b,a%b):a;}
    int fastpow(int a,int b,int mod)
    {
    	int res=1;
    	while (b) {if (b&1) res=1ll*res*a%mod;a=1ll*a*a%mod;b>>=1;}
    	return res;
    }
    int EX_BSGS()
    {
    	int cnt=0,sum=1;
    	for (int d=gcd(y,p);d!=1;d=gcd(y,p))
    	{
    		if (z%d) return -1;
    		++cnt,z/=d,p/=d,sum=1ll*sum*y/d%p;
    		if (z==sum) return cnt;
    	}
    	int m=sqrt(p)+1;M.clear();
    	for (int i=0,t=z;i<=m;++i,t=1ll*t*y%p) M[t]=i;
    	for (int i=1,tt=fastpow(y,m,p),t=1ll*sum*tt%p;i<=m;++i,t=1ll*t*tt%p)
    		if (M.count(t)) return i*m+cnt-M[t];
    	return -1;
    }
    int main()
    {
    	while (233)
    	{
    		y=gi();p=gi();z=gi();
    		if (y+z+p==0) break;
    		y%=p;z%=p;ans=EX_BSGS();
    		if (ans==-1) puts("No Solution");
    		else printf("%d
    ",ans);
    	}
    	return 0;
    }
    
  • 相关阅读:
    深入理解iOS开发中的锁
    整理:iOS开发算法资料
    (二)ELK Filebeat简介
    (一)ELK 部署
    zabbix + grafana 展示
    (二)LVS介绍
    (一)集群介绍
    zabbix 监控 ESXI
    zabbix proxy 安装
    zabbix fping 监控网络质量
  • 原文地址:https://www.cnblogs.com/zhoushuyu/p/8810383.html
Copyright © 2011-2022 走看看