zoukankan      html  css  js  c++  java
  • 一个简单的旋转控制器与固定屏幕位置

      如下是初步效果图,后面会用在前面的Ogre编辑器中.

      开始旋转控制写的比较简单,直接根据鼠标x,y调用yaw与pitch,虽然可用,但是不好用,有时要调到自己想要的方向搞一会,一点都不专业,记的以前好像看过那个软件使用的就是如上这种,分别给出三个方向的圆环,根据鼠标最开始点击的圆环,分别单独调用pitch,yaw,roll,今天花了些时间模仿了下这个,本文记录下.

      用的是Axiom,Ogre的C#版,代码差不多可以直接换成MOgre的.

      先生成模型,调用了本项目的一些代码,给出相关位置关键代码.箭头模型.

            public void AddArrow(Vector3 Vector21, Vector3 Vector22, double diameter, double headLength = 3, int thetaDiv = 18)
            {
                var dir = Vector22 - Vector21;
                double length = dir.Length;
                double r = diameter / 2;
    
                var pc = new List<Vector2>
                    {
                        new Vector2(0, 0),
                        new Vector2(0, r),
                        new Vector2(length - (diameter * headLength), r),
                        new Vector2(length - (diameter * headLength), r * 2),
                        new Vector2(length, 0)
                    };
    
                this.AddRevolvedGeometry(pc, null, Vector21, dir, thetaDiv);
            }
    
            public void AddRevolvedGeometry(IList<Vector2> Vector2s, IList<double> textureValues, Vector3 origin, Vector3 direction, int thetaDiv)
            {
                direction.Normalize();
    
                // Find two unit vectors orthogonal to the specified direction
                var u = direction.FindAnyPerpendicular();
                var v = direction.Cross(u);
    
                u.Normalize();
                v.Normalize();
    
                var circle = GetCircle(thetaDiv);
    
                int index0 = this.positions.Count;
                int n = Vector2s.Count;
    
                int totalNodes = (Vector2s.Count - 1) * 2 * thetaDiv;
                int rowNodes = (Vector2s.Count - 1) * 2;
    
                for (int i = 0; i < thetaDiv; i++)
                {
                    var w = (v * circle[i].x) + (u * circle[i].y);
    
                    for (int j = 0; j + 1 < n; j++)
                    {
                        // Add segment
                        var q1 = origin + (direction * Vector2s[j].x) + (w * Vector2s[j].y);
                        var q2 = origin + (direction * Vector2s[j + 1].x) + (w * Vector2s[j + 1].y);
    
                        // TODO: should not add segment if q1==q2 (corner Vector2)
                        // const double eps = 1e-6;
                        // if (Vector3.Subtract(q1, q2).LengthSquared < eps)
                        // continue;
                        this.positions.Add(q1);
                        this.positions.Add(q2);
    
                        if (this.normals != null)
                        {
                            double tx = Vector2s[j + 1].x - Vector2s[j].x;
                            double ty = Vector2s[j + 1].y - Vector2s[j].y;
                            var normal = (-direction * ty) + (w * tx);
                            normal.Normalize();
    
                            this.normals.Add(normal);
                            this.normals.Add(normal);
                        }
    
                        if (this.textureCoordinates != null)
                        {
                            this.textureCoordinates.Add(new Vector2((double)i / (thetaDiv - 1), textureValues == null ? (double)j / (n - 1) : textureValues[j]));
                            this.textureCoordinates.Add(new Vector2((double)i / (thetaDiv - 1), textureValues == null ? (double)(j + 1) / (n - 1) : textureValues[j + 1]));
                        }
    
                        int i0 = index0 + (i * rowNodes) + (j * 2);
                        int i1 = i0 + 1;
                        int i2 = index0 + ((((i + 1) * rowNodes) + (j * 2)) % totalNodes);
                        int i3 = i2 + 1;
    
                        this.triangleIndices.Add(i1);
                        this.triangleIndices.Add(i0);
                        this.triangleIndices.Add(i2);
    
                        this.triangleIndices.Add(i1);
                        this.triangleIndices.Add(i2);
                        this.triangleIndices.Add(i3);
                    }
                }
            }
    Arrow

      这里的代码主要是用到开源项目HelixToolkit里的,我稍微有些改动些以用于Axiom中,大意是先得到圆面控制点,然后按顺序连接圆环面,如上面箭头有五个圆面控制点,第一个和第二个点之间画一个箭头底部面,第二个和第三个点画圆柱体,第三个和第四个点画一个内圈,就是连接圆柱面最上面与箭头底面那个圆圈,第四个与第五个画最前面的箭头部分.通过他的这种,可以画出很多复杂的模型.

      然后是画外面的三个圆环.如下代码.

    public class Torus
        {
            float innerRadius = 0.2f;
            float outerRadius = 5.0f;
    
            /// <summary>
            /// Initializes a new instance of the <see cref="Torus"/> class.
            /// </summary>
            public Torus(float diameter, float innerDiameter)
            {
                innerRadius = innerDiameter;
                outerRadius = diameter;
                InitialiseTorus();
            }
    
            /// <summary>
            /// Initialises the torus.
            /// </summary>
            /// <returns></returns>
            private bool InitialiseTorus()
            {
                //  Calculate the number of vertices and indices.
                numVertices = (torusPrecision + 1) * (torusPrecision + 1);
                numIndices = 2 * torusPrecision * torusPrecision * 3;
    
                //  Create the vertices and indices.
                vertices = new Vector3[numVertices];
                indices = new uint[numIndices];
    
                //  Calculate the first ring - inner radius 4, outer radius 1.5
                for (int i = 0; i < torusPrecision + 1; i++)
                {
                    vertices[i] = new Vector3(innerRadius, 0.0f, 0.0f).GetRotatedZ(i * 360.0f / torusPrecision)
                        + new Vector3(outerRadius, 0.0f, 0.0f);
                    //vertices[i].s = 0.0f;
                    //vertices[i].t = (float)i / torusPrecision;
    
                    //vertices[i].sTangent.Set(0.0f, 0.0f, -1.0f);
                    //vertices[i].tTangent = (new Vertex(0.0f, -1.0f, 0.0f)).GetRotatedZ(i * 360.0f / torusPrecision);
                    //vertices[i].normal = vertices[i].tTangent.VectorProduct(vertices[i].sTangent);
                }
    
                //  Rotate the first ring to get the other rings
                for (uint ring = 1; ring < torusPrecision + 1; ring++)
                {
                    for (uint i = 0; i < torusPrecision + 1; i++)
                    {
                        vertices[ring * (torusPrecision + 1) + i] =
                            vertices[i].GetRotatedY(ring * 360.0f / torusPrecision);
    
                        //vertices[ring * (torusPrecision + 1) + i].s = 2.0f * ring / torusPrecision;
                        //vertices[ring * (torusPrecision + 1) + i].t = vertices[i].t;
    
                        //vertices[ring * (torusPrecision + 1) + i].sTangent =
                        //    vertices[i].sTangent.GetRotatedY(ring * 360.0f / torusPrecision);
                        //vertices[ring * (torusPrecision + 1) + i].tTangent =
                        //    vertices[i].tTangent.GetRotatedY(ring * 360.0f / torusPrecision);
                        //vertices[ring * (torusPrecision + 1) + i].normal =
                        //    vertices[i].normal.GetRotatedY(ring * 360.0f / torusPrecision);
                    }
                }
                //  Calculate the indices
                for (uint ring = 0; ring < torusPrecision; ring++)
                {
                    for (uint i = 0; i < torusPrecision; i++)
                    {
                        indices[((ring * torusPrecision + i) * 2) * 3 + 0] = ring * (torusPrecision + 1) + i;
                        indices[((ring * torusPrecision + i) * 2) * 3 + 1] = (ring + 1) * (torusPrecision + 1) + i;
                        indices[((ring * torusPrecision + i) * 2) * 3 + 2] = ring * (torusPrecision + 1) + i + 1;
                        indices[((ring * torusPrecision + i) * 2 + 1) * 3 + 0] = ring * (torusPrecision + 1) + i + 1;
                        indices[((ring * torusPrecision + i) * 2 + 1) * 3 + 1] = (ring + 1) * (torusPrecision + 1) + i;
                        indices[((ring * torusPrecision + i) * 2 + 1) * 3 + 2] = (ring + 1) * (torusPrecision + 1) + i + 1;
                    }
                }
    
                //  OK, that's the torus done!
                return true;
            }
    
            /// <summary>
            /// The number of vertices.
            /// </summary>
            private uint numVertices = 0;
    
            /// <summary>
            /// The number of indices.
            /// </summary>
            private uint numIndices = 0;
    
            /// <summary>
            /// The torus indices.
            /// </summary>
            private uint[] indices;
    
            /// <summary>
            /// The torus vertices.
            /// </summary>
            private Vector3[] vertices;
    
            /// <summary>
            /// We define our torus to have a precision of 48. 
            /// This means that there are 48 vertices per ring when we construct it.
            /// </summary>
            private const uint torusPrecision = 48;
    
            /// <summary>
            /// Gets the num vertices.
            /// </summary>
            public uint NumVertices
            {
                get { return numVertices; }
            }
    
            /// <summary>
            /// Gets the num indices.
            /// </summary>
            public uint NumIndices
            {
                get { return numIndices; }
            }
    
            /// <summary>
            /// Gets the vertices.
            /// </summary>
            public Vector3[] Vertices
            {
                get { return vertices; }
            }
    
            /// <summary>
            /// Gets the indices.
            /// </summary>
            public uint[] Indices
            {
                get { return indices; }
            }
        }
    public static class VertexExtensions
        {
            public static Vector3 GetRotatedX(this Vector3 me, float angle)
            {
                if (angle == 0.0)
                    return new Vector3(me.x, me.y, me.z);
    
                float sinAngle = (float)Math.Sin(Math.PI * angle / 180);
                float cosAngle = (float)Math.Cos(Math.PI * angle / 180);
    
                return new Vector3(me.x,
                                    me.y * cosAngle - me.z * sinAngle,
                                    me.y * sinAngle + me.z * cosAngle);
            }
    
            public static Vector3 GetRotatedY(this Vector3 me, float angle)
            {
                if (angle == 0.0)
                    return new Vector3(me.x, me.y, me.z);
    
                float sinAngle = (float)Math.Sin(Math.PI * angle / 180);
                float cosAngle = (float)Math.Cos(Math.PI * angle / 180);
    
                return new Vector3(me.x * cosAngle + me.z * sinAngle,
                            me.y,
                            -me.x * sinAngle + me.z * cosAngle);
            }
    
            public static Vector3 GetRotatedZ(this Vector3 me, float angle)
            {
                if (angle == 0.0)
                    return new Vector3(me.x, me.y, me.z);
    
                float sinAngle = (float)Math.Sin(Math.PI * angle / 180);
                float cosAngle = (float)Math.Cos(Math.PI * angle / 180);
    
                return new Vector3(me.x * cosAngle - me.y * sinAngle,
                        me.x * sinAngle + me.y * cosAngle,
                        me.z);
            }
    
            public static Vector3 GetPackedTo01(this Vector3 me)
            {
                Vector3 temp = new Vector3(me.x, me.y, me.z);
                temp.Normalize();
    
                temp = (temp * 0.5f) + new Vector3(0.5f, 0.5f, 0.5f);
    
                return temp;
            }
    
            public static List<Vector3> GetRotatedX(this IList<Vector3> ms, float angle)
            {
                List<Vector3> result = new List<Vector3>(ms.Count);
                foreach (var m in ms)
                {
                    result.Add(m.GetRotatedX(angle));
                }
                return result;
            }
    
            public static List<Vector3> GetRotatedY(this IList<Vector3> ms, float angle)
            {
                List<Vector3> result = new List<Vector3>(ms.Count);
                foreach (var m in ms)
                {
                    result.Add(m.GetRotatedY(angle));
                }
                return result;
            }
    
            public static List<Vector3> GetRotatedZ(this IList<Vector3> ms, float angle)
            {
                List<Vector3> result = new List<Vector3>(ms.Count);
                foreach (var m in ms)
                {
                    result.Add(m.GetRotatedZ(angle));
                }
                return result;
            }
        }
    Torus

      这部分代码主要取自SharpGL,改动一些代码然后用于现在的项目,另外也有一些,但是不是用的Triangles的方式画的,那种也就差不多只能用在opengl立即模式下,现在的引擎应该都用不了.

      如下是重点了,绘制与相关鼠标点击算法.

          public enum EulerRotate
        {
            None,
            Yaw,//y
            Pitch,//x
            Roll,//z
        }
          public class DrawRotate : RenderBasic
        {
            private float diameter;
            private float headLength;
            private int thetaDiv;
            private float length;
            private bool bChange = false;
    
            public float Diameter
            {
                get
                {
                    return diameter;
                }
                set
                {
                    if (diameter != value)
                    {
                        diameter = value;
                        bChange = true;
                    }
                }
            }
            public float HeadLength
            {
                get
                {
                    return headLength;
                }
                set
                {
                    if (headLength != value)
                    {
                        headLength = value;
                        bChange = true;
                    }
                }
            }
            public int ThetaDiv
            {
                get
                {
                    return thetaDiv;
                }
                set
                {
                    if (thetaDiv != value)
                    {
                        thetaDiv = value;
                        bChange = true;
                    }
                }
            }
            public float Lenght
            {
                get
                {
                    return length;
                }
                set
                {
                    length = value;
                }
            }
    
            public EulerRotate rotate = EulerRotate.None;
    
            public DrawRotate()
                : this(5.0f, 0.1f)
            {
            }
    
            public DrawRotate(float length, float diameter, float headLength = 3, int thetaDiv = 18)
            {
                this.length = length;
                this.diameter = diameter;
                this.headLength = headLength;
                this.thetaDiv = thetaDiv;
                this.bChange = true;
                this.MaterialName = "Material_Base";
                this.Update();
            }
    
            public void Update()
            {
                if (bChange && this.isVisible)
                {
                    this.Vertexs.Reset();
    
                    var builder = new MeshBuilder(false, false);
                    builder.AddArrow(Vector3.Zero, Vector3.UnitX * this.length, this.diameter, this.headLength, this.thetaDiv);
                    this.Vertexs.AddBatch(builder.Positions, builder.TriangleIndices, ColorEx.Red);
    
                    builder = new MeshBuilder(false, false);
                    builder.AddArrow(Vector3.Zero, Vector3.UnitY * this.length, this.diameter, this.headLength, this.thetaDiv);
                    this.Vertexs.AddBatch(builder.Positions, builder.TriangleIndices, ColorEx.Green);
    
                    builder = new MeshBuilder(false, false);
                    builder.AddArrow(Vector3.Zero, Vector3.UnitZ * this.length, this.diameter, this.headLength, this.thetaDiv);
                    this.Vertexs.AddBatch(builder.Positions, builder.TriangleIndices, ColorEx.Blue);
    
                    MeshGeometry3D cube = MeshHelper.CreateCube(Vector3.UnitScale * 0.125, 0.25f);
                    this.Vertexs.AddBatch(cube.Positions, cube.TriangleIndices, ColorEx.White);
    
                    Torus torus = new Torus(length + 1, 0.2f);
                    this.Vertexs.AddUBatch(torus.Vertices, torus.Indices, ColorEx.Green);
                    this.Vertexs.AddUBatch(torus.Vertices.GetRotatedX(90), torus.Indices, ColorEx.Blue);
                    this.Vertexs.AddUBatch(torus.Vertices.GetRotatedZ(90), torus.Indices, ColorEx.Red);
                    this.UpdateBuffer();
                    bChange = false;
                }
            }
    
            public void HitTest(Ray ray)
            {
                Sphere sphere = new Sphere(this.ParentNode.DerivedPosition, length + 1);
                var result = ray.IntersectsRay(sphere);
                if (result.Item1)
                {
                    var h1 = ray.Origin + result.Item2 * ray.Direction - this.ParentNode.DerivedPosition;
                    var h2 = ray.Origin + result.Item3 * ray.Direction - this.ParentNode.DerivedPosition;
                    var inverseRotate = this.ParentNode.DerivedOrientation.Inverse();
                    h1 = inverseRotate * h1;
                    h2 = inverseRotate * h2;
                    float x1 = Math.Abs(h1.x);
                    float y1 = Math.Abs(h1.y);
                    float z1 = Math.Abs(h1.z);
                    float x2 = Math.Abs(h2.x);
                    float y2 = Math.Abs(h2.y);
                    float z2 = Math.Abs(h2.z);
                    float min1 = Math.Min(x1, Math.Min(y1, z1));
                    float min2 = Math.Min(x2, Math.Min(y2, z2));
                    float min = Math.Min(min1, min2);
                    if (min == x1 || min == x2)
                        rotate = EulerRotate.Pitch;
                    else if (min == y1 || min == y2)
                        rotate = EulerRotate.Yaw;
                    else if (min == z1 || min == z2)
                        rotate = EulerRotate.Roll;
                }
            }
    
            public void Rotate(float value)
            {
                if (rotate == EulerRotate.Pitch)
                {
                    this.ParentNode.Pitch(value);
                }
                else if (rotate == EulerRotate.Yaw)
                {
                    this.ParentNode.Yaw(value);
                }
                else if (rotate == EulerRotate.Roll)
                {
                    this.ParentNode.Roll(-value);
                }
            }
        }
    DrawRotate

      RenderBasic是一个简单实现Renderable与MovableObject的类,差不多和SimpleRenderable一样,因为这个项目里的模型有些特殊,所以没有用SimpleRenderable,我简单自己重新写了个,在这不影响,换成SimpleRenderable也差不多.

      Update就是收集模型数据,交给RenderBasic的UpdateBuffer生成缓冲区数据,简单来说,是一个三float顶点,一int颜色的缓冲区,这里Vertexs.AddBatch会自动更新里面的索引数据,这样做主要是整合成一个Pass渲染,提高效率.

      主要部分来了,HitTest这个函数就是用于检测你点击在那个圆环上.因为Ogre/Axiom自己给的Intersects算法只给出了最近的那个交点,在这我们需要得到这二个交点,简单修改下.  

           public static System.Tuple<bool, float, float> IntersectsRay(this Ray ray, Sphere sphere)
            {
                var rayDir = ray.Direction;
                //Adjust ray origin relative to sphere center
                var rayOrig = ray.Origin - sphere.Center;
                var radius = sphere.Radius;
              
                // mmm...sweet quadratics
                // Build coeffs which can be used with std quadratic solver
                // ie t = (-b +/- sqrt(b*b* + 4ac)) / 2a
                var a = rayDir.Dot(rayDir);
                var b = 2 * rayOrig.Dot(rayDir);
                var c = rayOrig.Dot(rayOrig) - (radius * radius);
    
                // calc determinant
                var d = (b * b) - (4 * a * c);
    
                if (d < 0)
                {
                    // no intersection
                    return Tuple.Create(false, 0.0f, 0.0f);
                }
                else
                {
                    // BTW, if d=0 there is one intersection, if d > 0 there are 2
                    // But we only want the closest one, so that's ok, just use the 
                    // '-' version of the solver
                    float t1 = (-b - Utility.Sqrt(d)) / (2 * a);
                    float t2 = (-b + Utility.Sqrt(d)) / (2 * a);
                    return Tuple.Create(true, t1, t2);
                }
            }
    IntersectsRayShpere

      返回的t1与t2分别是射线与球的交点在射线上的位置,现在我们只知道这二个点在球上,如何确定他在那个圆环上了,我们稍微想一下,还是很容易想到的,点击垂直x轴面的圆环时,他的x值必定在0附近,或者这样说,是x,y,z这三个绝对值中最小的.这样我们拿到最少值就可以知道点击的那个环了.

      注意二点,ray相交后的点是世界坐标系下的,我们比较x,y,z的大小应该是在模型坐标系下,所以我们把点转化,第一个是位置,第二是方向,方向把父方向的逆求出然后相剩就可以了.还有一个位置就是上面所说,二个交点都要求出,因为我们是不管外面还是里面的.

      刚看到图,发现有个位置还可以说下,右上角有个固定在屏幕位置的模型,这个当时我还走了点弯路,开始是准备如UI那样,去掉视图与透视矩阵,试验发现后面要根据摄像机来转化顶点位置,这样一来,一是比较麻烦,二是每点都通过CPU计算,降低效率.后面发现没必要,直接更新模型的模型矩阵就行,看如下代码.

    this.renderWindow.BeforeViewportUpdate += renderWindow_BeforeViewportUpdate;
            void renderWindow_BeforeViewportUpdate(Axiom.Graphics.RenderTargetViewportEventArgs e)
            {
                var currentView = e.Viewport;
                var camera = e.Viewport.Camera;
    
                var node = EngineCore.Instance.AxisNode;
                var corners = camera.WorldSpaceCorners;
    
                var p1 = corners[0] + (corners[4] - corners[0]) * 0.02;
                var p2 = corners[2] + (corners[6] - corners[2]) * 0.02;
    
                var pos = p1 + (p2 - p1) * 0.1;
    
                node.Position = pos;
                node.Orientation = elementNode.Orientation;
            }
    固定在屏幕特定位置.

      这个BeforeViewportUpdate的插入渲染的位置可以看我前文Ogre 监听类与渲染流程中有详细说明.在这里,直接根据视截体,直接定位在视截体的右上面,camera.WorldSpaceCorners是视截体的八个点(世界坐标下),0-3索引分别对应近视面的右上,左上,左下,右下,4-7索引对应远视面的这四个位置.根据线性式取右上角的位置.因为我这边axisNode是直接在根节点下的,所以直接用position就行,他的方向用模型的方向,这样这个节点就可以显示模型现在的方向.这样不管摄像机如何变换,这个节点始终在位置右上角.

      如果有用Axiom的同学要注意点,node.Position设置值有一个BUG,主要是因为MovableObject.cs中的如下代码.

            public override AxisAlignedBox GetWorldBoundingBox( bool derive )
            {
                if ( derive )
                {
                    this.worldAABB = BoundingBox;
                    this.worldAABB.Transform( ParentNodeFullTransform );
                }
    
                return this.worldAABB;
            }
    GetWorldBoundingBox

      把this.wordAABB = BoundingBox改成this.worldAABB = BoundingBox.Clone() as AxisAlignedBox就可,可能是因为原来AxisAlignedBox在C#中是结构体,后面变成类了,这样每次更新节点位置会调用这个函数,然后更新SceneNode时就会更新MovableObject的AABB,这样就导致AABB又Transform了节点矩阵一次,AABB是错误的了,这样在添加前渲染通道前的摄像机可见检测就可能检测不到了.MOgre应该没有这问题.

  • 相关阅读:
    模拟title提示!
    常用CSS缩写语法总结
    cron表达式每个月最后一天,corn表达式使用L报错
    浏览器调试器(F12)详解
    查询重复数据只显示一条并且在规定范围时间内
    java导出统计数据excel设置单元格样式
    微信小程序官方人脸核身认证
    小程序引用app.js中的全局变量
    微信小程序 view中的image水平垂直居中
    MYSQL中的sql_mode模式
  • 原文地址:https://www.cnblogs.com/zhouxin/p/4724886.html
Copyright © 2011-2022 走看看