zoukankan      html  css  js  c++  java
  • 详解numpy的argmax

    从最简单的例子出发

    假定现在有一个数组a = [3, 1, 2, 4, 6, 1]现在要算数组a中最大数的索引是多少.这个问题对于刚学编程的同学就能解决.最直接的思路,先假定第0个数最大,然后拿这个和后面的数比,找到大的就更新索引.代码如下

    a = [3, 1, 2, 4, 6, 1]
    maxindex = 0
    i = 0
    for tmp in a:
        if tmp > a[maxindex]:
            maxindex = i
        i += 1
    print(maxindex)
    

    这个问题虽然简单.但是可以帮助我们理解argmax.

    解释

    还是从一维数组出发.看下面的例子.

    import numpy as np
    a = np.array([3, 1, 2, 4, 6, 1])
    print(np.argmax(a))
    

    argmax返回的是最大数的索引.argmax有一个参数axis,默认是0,表示第几维的最大值.看二维的情况.

    import numpy as np
    a = np.array([[1, 5, 5, 2],
                  [9, 6, 2, 8],
                  [3, 7, 9, 1]])
    print(np.argmax(a, axis=0))
    

    为了描述方便,a就表示这个二维数组.np.argmax(a, axis=0)的含义是a[0][j],a[1][j],a[2]j中最大值的索引.从a[0][j]开始,最大值索引最初为(0,0,0,0),拿a[0][j]和a[1][j]作比较,9大于1,6大于5,8大于2,所以最大值索引由(0,0,0,0)更新为(1,1,0,1),再和a[2][j]作比较,7大于6,9大于5所以更新为(1,2,2,1).再分析下面的输出.

    import numpy as np
    a = np.array([[1, 5, 5, 2],
                  [9, 6, 2, 8],
                  [3, 7, 9, 1]])
    print(np.argmax(a, axis=1))
    

    np.argmax(a, axis=1)的含义是a[i][0],a[i][1],a[i][2],a[i]3中最大值的索引.从a[i][0]开始,a[i][0]对应的索引为(0,0,0),先假定它就是最大值索引(思路和上节简单例子完全一致)拿a[i][0]和a[i][1]作比较,5大于1,7大于3所以最大值索引由(0,0,0)更新为(1,0,1),再和a[i][2]作比较,9大于7,更新为(1,0,2),再和a[i][3]作比较,不用更新,最终值为(1,0,2)
    再看三维的情况.

    import numpy as np
    a = np.array([
                  [
                      [1, 5, 5, 2],
                      [9, -6, 2, 8],
                      [-3, 7, -9, 1]
                  ],
    
                  [
                      [-1, 5, -5, 2],
                      [9, 6, 2, 8],
                      [3, 7, 9, 1]
                  ]
                ])
    print(np.argmax(a, axis=0))
    

    np.argmax(a, axis=0)的含义是a[0][j][k],a[1][j][k] (j=0,1,2,k=0,1,2,3)中最大值的索引.从a[0][j][k]开始,a[0][j][k]对应的索引为((0,0,0,0),(0,0,0,0),(0,0,0,0)),拿a[0][j][k]和a[1][j][k]对应项作比较6大于-6,3大于-3,9大于-9,所以更新这几个位置的索引,将((0,0,0,0),(0,0,0,0),(0,0,0,0))更新为((0,0,0,0),(0,1,0,0),(1,0,1,0)). 再看axis=1的情况.

    import numpy as np
    a = np.array([
                  [
                      [1, 5, 5, 2],
                      [9, -6, 2, 8],
                      [-3, 7, -9, 1]
                  ],
    
                  [
                      [-1, 5, -5, 2],
                      [9, 6, 2, 8],
                      [3, 7, 9, 1]
                  ]
                ])
    print(np.argmax(a, axis=1))
    

    np.argmax(a, axis=1)的含义是a[i][0][k],a[i][1][k] (i=0,1,k=0,1,2,3)中最大值的索引.从a[i][0][k]开始,a[i][0][k]对应的索引为((0,0,0,0),(0,0,0,0)),拿a[i][0][k]和a[i][1][k]对应项作比较,9大于1,8大于2,9大于-1,6大于5,2大于-5,8大于2,所以更新这几个位置的索引,将((0,0,0,0),(0,0,0,0))更新为((1,0,0,1),(1,1,1,1)),现在最大值对应的数组为((9,5,5,8),(9,6,2,8)).再拿((9,5,5,8),(9,6,2,8))和a[i][2][k]对应项从比较,7大于5,7大于6,9大于2.更新这几个位置的索引.将((1,0,0,1),(1,1,1,1))更新为((1,2,0,1),(1,2,2,1)).axis=2的情况也是类似的.

    参考资料

    numpy官方文档

  • 相关阅读:
    小学期实践2
    小学期实践小组心得
    小学期实践1
    《构建之法》8
    《构建之法》7
    《构建之法》6
    《构建之法》5
    《构建之法》4
    《构建之法》3
    lintcode
  • 原文地址:https://www.cnblogs.com/zhouyang209117/p/6512302.html
Copyright © 2011-2022 走看看