一、updateStateByKey 解析
1.1 updateStateByKey 的使用实例
首先看一个updateStateByKey函数使用的例子:
object UpdateStateByKeyDemo {def main(args: Array[String]) {val conf = new SparkConf().setAppName("UpdateStateByKeyDemo")val ssc = new StreamingContext(conf,Seconds(20))//要使用updateStateByKey方法,必须设置Checkpoint。ssc.checkpoint("/checkpoint/")val socketLines = ssc.socketTextStream("localhost",9999)socketLines.flatMap(_.split(",")).map(word=>(word,1)).updateStateByKey((currValues:Seq[Int],preValue:Option[Int]) =>{val currValue = currValues.sum //将目前值相加Some(currValue + preValue.getOrElse(0)) //目前值的和加上历史值}).print()ssc.start()ssc.awaitTermination()ssc.stop()}}
代码很简单,关键地方写了详细的注释。
1.2 updateStateByKey 方法源码分析
我们知道map返回的是MappedDStream,而MappedDStream并没有updateStateByKey方法,并且它的父类DStream中也没有该方法。但是DStream的伴生对象中有一个隐式转换函数
implicit def toPairDStreamFunctions[K, V](stream: DStream[(K, V)])(implicit kt: ClassTag[K], vt: ClassTag[V], ord: Ordering[K] = null):PairDStreamFunctions[K, V] = {new PairDStreamFunctions[K, V](stream)}
PairDStreamFunction 中updateStateByKey的源码如下:
def updateStateByKey[S: ClassTag](updateFunc: (Seq[V], Option[S]) => Option[S]): DStream[(K, S)] = ssc.withScope {updateStateByKey(updateFunc, defaultPartitioner())}
其中updateFunc就要传入的参数,他是一个函数,Seq[V]表示当前key对应的所有值,Option[S] 是当前key的历史状态,返回的是新的状态。
最终会调用下面的方法:
def updateStateByKey[S: ClassTag](updateFunc: (Iterator[(K, Seq[V], Option[S])]) => Iterator[(K, S)],partitioner: Partitioner,rememberPartitioner: Boolean): DStream[(K, S)] = ssc.withScope {new StateDStream(self, ssc.sc.clean(updateFunc), partitioner, rememberPartitioner, None)}
在这里面new出了一个StateDStream对象。在其compute方法中,会先获取上一个batch计算出的RDD(包含了至程序开始到上一个batch单词的累计计数),然后在获取本次batch中StateDStream的父类计算出的RDD(本次batch的单词计数)分别是prevStateRDD和parentRDD,然后在调用 computeUsingPreviousRDD 方法:
private [this] def computeUsingPreviousRDD (parentRDD: RDD[(K, V)], prevStateRDD: RDD[(K, S)]) = {// Define the function for the mapPartition operation on cogrouped RDD;// first map the cogrouped tuple to tuples of required type,// and then apply the update functionval updateFuncLocal = updateFuncval finalFunc = (iterator: Iterator[(K, (Iterable[V], Iterable[S]))]) => {val i = iterator.map { t =>val itr = t._2._2.iteratorval headOption = if (itr.hasNext) Some(itr.next()) else None(t._1, t._2._1.toSeq, headOption)}updateFuncLocal(i)}val cogroupedRDD = parentRDD.cogroup(prevStateRDD, partitioner)val stateRDD = cogroupedRDD.mapPartitions(finalFunc, preservePartitioning)Some(stateRDD)}
两个RDD进行cogroup然后应用updateStateByKey传入的函数。cogroup的性能是比较低下的。
二、mapWithState方法解析
2.1 mapWithState方法使用实例:
object StatefulNetworkWordCount {def main(args: Array[String]) {if (args.length < 2) {System.err.println("Usage: StatefulNetworkWordCount <hostname> <port>")System.exit(1)}StreamingExamples.setStreamingLogLevels()val sparkConf = new SparkConf().setAppName("StatefulNetworkWordCount")// Create the context with a 1 second batch sizeval ssc = new StreamingContext(sparkConf, Seconds(1))ssc.checkpoint(".")// Initial state RDD for mapWithState operationval initialRDD = ssc.sparkContext.parallelize(List(("hello", 1), ("world", 1)))// Create a ReceiverInputDStream on target ip:port and count the// words in input stream of delimited test (eg. generated by 'nc')val lines = ssc.socketTextStream(args(0), args(1).toInt)val words = lines.flatMap(_.split(" "))val wordDstream = words.map(x => (x, 1))// Update the cumulative count using mapWithState// This will give a DStream made of state (which is the cumulative count of the words)val mappingFunc = (word: String, one: Option[Int], state: State[Int]) => {val sum = one.getOrElse(0) + state.getOption.getOrElse(0)val output = (word, sum)state.update(sum)output}val stateDstream = wordDstream.mapWithState(StateSpec.function(mappingFunc).initialState(initialRDD))stateDstream.print()ssc.start()ssc.awaitTermination()}}
def mapWithState[StateType: ClassTag, MappedType: ClassTag](spec: StateSpec[K, V, StateType, MappedType]): MapWithStateDStream[K, V, StateType, MappedType] = {new MapWithStateDStreamImpl[K, V, StateType, MappedType](self,spec.asInstanceOf[StateSpecImpl[K, V, StateType, MappedType]])}
MapWithStateDStreamImpl 中创建了一个InternalMapWithStateDStream类型对象internalStream,在MapWithStateDStreamImpl的compute方法中调用了internalStream的getOrCompute方法。
/** Internal implementation of the [[MapWithStateDStream]] */private[streaming] class MapWithStateDStreamImpl[KeyType: ClassTag, ValueType: ClassTag, StateType: ClassTag, MappedType: ClassTag](dataStream: DStream[(KeyType, ValueType)],spec: StateSpecImpl[KeyType, ValueType, StateType, MappedType])extends MapWithStateDStream[KeyType, ValueType, StateType, MappedType](dataStream.context) {private val internalStream =new InternalMapWithStateDStream[KeyType, ValueType, StateType, MappedType](dataStream, spec)override def slideDuration: Duration = internalStream.slideDurationoverride def dependencies: List[DStream[_]] = List(internalStream)override def compute(validTime: Time): Option[RDD[MappedType]] = {internalStream.getOrCompute(validTime).map { _.flatMap[MappedType] { _.mappedData } }}
InternalMapWithStateDStream中没有getOrCompute方法,这里调用的是其父类 DStream 的getOrCpmpute方法,该方法中最终会调用InternalMapWithStateDStream的Compute方法:
/** Method that generates a RDD for the given time */override def compute(validTime: Time): Option[RDD[MapWithStateRDDRecord[K, S, E]]] = {// Get the previous state or create a new empty state RDDval prevStateRDD = getOrCompute(validTime - slideDuration) match {case Some(rdd) =>if (rdd.partitioner != Some(partitioner)) {// If the RDD is not partitioned the right way, let us repartition it using the// partition index as the key. This is to ensure that state RDD is always partitioned// before creating another state RDD using itMapWithStateRDD.createFromRDD[K, V, S, E](rdd.flatMap { _.stateMap.getAll() }, partitioner, validTime)} else {rdd}case None =>MapWithStateRDD.createFromPairRDD[K, V, S, E](spec.getInitialStateRDD().getOrElse(new EmptyRDD[(K, S)](ssc.sparkContext)),partitioner,validTime)}// Compute the new state RDD with previous state RDD and partitioned data RDD// Even if there is no data RDD, use an empty one to create a new state RDDval dataRDD = parent.getOrCompute(validTime).getOrElse {context.sparkContext.emptyRDD[(K, V)]}val partitionedDataRDD = dataRDD.partitionBy(partitioner)val timeoutThresholdTime = spec.getTimeoutInterval().map { interval =>(validTime - interval).milliseconds}Some(new MapWithStateRDD(prevStateRDD, partitionedDataRDD, mappingFunction, validTime, timeoutThresholdTime))}
根据给定的时间生成一个MapWithStateRDD,首先获取了先前状态的RDD:preStateRDD和当前时间的RDD:dataRDD,然后对dataRDD基于先前状态RDD的分区器进行重新分区获取partitionedDataRDD。最后将preStateRDD,partitionedDataRDD和用户定义的函数mappingFunction传给新生成的MapWithStateRDD对象返回。
下面看一下MapWithStateRDD的compute方法:
override def compute(partition: Partition, context: TaskContext): Iterator[MapWithStateRDDRecord[K, S, E]] = {val stateRDDPartition = partition.asInstanceOf[MapWithStateRDDPartition]val prevStateRDDIterator = prevStateRDD.iterator(stateRDDPartition.previousSessionRDDPartition, context)val dataIterator = partitionedDataRDD.iterator(stateRDDPartition.partitionedDataRDDPartition, context)- //prevRecord 代表一个分区的数据
val prevRecord = if (prevStateRDDIterator.hasNext) Some(prevStateRDDIterator.next()) else Noneval newRecord = MapWithStateRDDRecord.updateRecordWithData(prevRecord,dataIterator,mappingFunction,batchTime,timeoutThresholdTime,removeTimedoutData = doFullScan // remove timedout data only when full scan is enabled)Iterator(newRecord)}
MapWithStateRDDRecord 对应MapWithStateRDD 的一个分区:
private[streaming] case class MapWithStateRDDRecord[K, S, E](var stateMap: StateMap[K, S], var mappedData: Seq[E])
其中stateMap存储了key的状态,mappedData存储了mapping function函数的返回值
看一下MapWithStateRDDRecord的updateRecordWithData方法
def updateRecordWithData[K: ClassTag, V: ClassTag, S: ClassTag, E: ClassTag](prevRecord: Option[MapWithStateRDDRecord[K, S, E]],dataIterator: Iterator[(K, V)],mappingFunction: (Time, K, Option[V], State[S]) => Option[E],batchTime: Time,timeoutThresholdTime: Option[Long],removeTimedoutData: Boolean): MapWithStateRDDRecord[K, S, E] = {// 创建一个新的 state map 从过去的Recoord中复制 (如果存在) 否则创建一下空的StateMap对象val newStateMap = prevRecord.map { _.stateMap.copy() }. getOrElse { new EmptyStateMap[K, S]() }val mappedData = new ArrayBuffer[E]- //状态
val wrappedState = new StateImpl[S]()// Call the mapping function on each record in the data iterator, and accordingly// update the states touched, and collect the data returned by the mapping functiondataIterator.foreach { case (key, value) =>//获取key对应的状态wrappedState.wrap(newStateMap.get(key))- //调用mappingFunction获取返回值
val returned = mappingFunction(batchTime, key, Some(value), wrappedState)//维护newStateMap的值if (wrappedState.isRemoved) {newStateMap.remove(key)} else if (wrappedState.isUpdated|| (wrappedState.exists && timeoutThresholdTime.isDefined)) {newStateMap.put(key, wrappedState.get(), batchTime.milliseconds)}mappedData ++= returned}// Get the timed out state records, call the mapping function on each and collect the// data returnedif (removeTimedoutData && timeoutThresholdTime.isDefined) {newStateMap.getByTime(timeoutThresholdTime.get).foreach { case (key, state, _) =>wrappedState.wrapTimingOutState(state)val returned = mappingFunction(batchTime, key, None, wrappedState)mappedData ++= returnednewStateMap.remove(key)}}MapWithStateRDDRecord(newStateMap, mappedData)}
最终返回MapWithStateRDDRecord对象交个MapWithStateRDD的compute函数,MapWithStateRDD的compute函数将其封装成Iterator返回。