zoukankan      html  css  js  c++  java
  • 16.Spark Streaming源码解读之数据清理机制解析

    原创文章,转载请注明:转载自 听风居士博客(http://www.cnblogs.com/zhouyf/)

    本期内容:

    一、Spark Streaming 数据清理总览

    二、Spark Streaming 数据清理过程详解

    三、Spark Streaming 数据清理的触发机制


        Spark Streaming不像普通Spark 的应用程序,普通Spark程序运行完成后,中间数据会随着SparkContext的关闭而被销毁,而Spark Streaming一直在运行,不断计算,每一秒中在不断运行都会产生大量的中间数据,所以需要对对象及元数据需要定期清理。每个batch duration运行时不断触发job后需要清理rdd和元数据。下面我们就结合源码详细解析一下Spark Streaming程序的数据清理机制。


    一、数据清理总览

        Spark Streaming 运行过程中,随着时间不断产生Job,当job运行结束后,需要清理相应的数据(RDD,元数据信息,Checkpoint数据),Job由JobGenerator定时产生,数据的清理也是有JobGenerator负责。

        JobGenerator负责数据清理控制的代码位于一个消息循环体eventLoop中:

    1. eventLoop = new EventLoop[JobGeneratorEvent]("JobGenerator") {
    2. override protected def onReceive(event: JobGeneratorEvent): Unit = processEvent(event)
    3. override protected def onError(e: Throwable): Unit = {
    4. jobScheduler.reportError("Error in job generator", e)
    5. }
    6. }
    7. eventLoop.start()

    其中的核心逻辑位于processEvent(event)函数中:

    1. /** Processes all events */
    2. private def processEvent(event: JobGeneratorEvent) {
    3. logDebug("Got event " + event)
    4. event match {
    5. case GenerateJobs(time) => generateJobs(time)
    6. case ClearMetadata(time) => clearMetadata(time)
    7. case DoCheckpoint(time, clearCheckpointDataLater) =>
    8. doCheckpoint(time, clearCheckpointDataLater)
    9. case ClearCheckpointData(time) => clearCheckpointData(time)
    10. }
    11. }

    可以看到当JobGenerator收到ClearMetadata(time) 和 ClearCheckpointData(time)是会进行相应的数据清理,其中 clearMetadata(time)会清理RDD数据和一些元数据信息, ClearCheckpointData(time)会清理Checkpoint数据。

    二、数据清理过程详解
        2.1 ClearMetaData 过程详解
    首先看一下clearMetaData函数的处理逻辑:
    1. /** Clear DStream metadata for the given `time`. */
    2. private def clearMetadata(time: Time) {
    3. ssc.graph.clearMetadata(time)
    4. // If checkpointing is enabled, then checkpoint,
    5. // else mark batch to be fully processed
    6. if (shouldCheckpoint) {
    7. eventLoop.post(DoCheckpoint(time, clearCheckpointDataLater = true))
    8. } else {
    9. // If checkpointing is not enabled, then delete metadata information about
    10. // received blocks (block data not saved in any case). Otherwise, wait for
    11. // checkpointing of this batch to complete.
    12. val maxRememberDuration = graph.getMaxInputStreamRememberDuration()
    13. jobScheduler.receiverTracker.cleanupOldBlocksAndBatches(time - maxRememberDuration)
    14. jobScheduler.inputInfoTracker.cleanup(time - maxRememberDuration)
    15. markBatchFullyProcessed(time)
    16. }
    17. }

    首先调用了DStreamGraph的clearMetadata方法:

    1. def clearMetadata(time: Time) {
    2. logDebug("Clearing metadata for time " + time)
    3. this.synchronized {
    4. outputStreams.foreach(_.clearMetadata(time))
    5. }
    6. logDebug("Cleared old metadata for time " + time)
    7. }

    这里调用了所有OutputDStream (关于DStream 的分类请参考http://blog.csdn.net/zhouzx2010/article/details/51460790)的clearMetadata方法

    1. private[streaming] def clearMetadata(time: Time) {
    2. val unpersistData = ssc.conf.getBoolean("spark.streaming.unpersist", true)
    3. //获取需要清理的RDD
    4. val oldRDDs = generatedRDDs.filter(_._1 <= (time - rememberDuration))
    5. logDebug("Clearing references to old RDDs: [" +
    6. oldRDDs.map(x => s"${x._1} -> ${x._2.id}").mkString(", ") + "]")

    7. //将要清除的RDD从generatedRDDs 中清除
    8. generatedRDDs --= oldRDDs.keys
    9. if (unpersistData) {
    10. logDebug(s"Unpersisting old RDDs: ${oldRDDs.values.map(_.id).mkString(", ")}")
    11. oldRDDs.values.foreach { rdd =>
    12.     //将RDD 从persistence列表中移除
    13. rdd.unpersist(false)
    14. // Explicitly remove blocks of BlockRDD
    15. rdd match {
    16. case b: BlockRDD[_] =>
    17. logInfo(s"Removing blocks of RDD $b of time $time")
    18. //移除RDD的block 数据
    19. b.removeBlocks()
    20. case _ =>
    21. }
    22. }
    23. }
    24. logDebug(s"Cleared ${oldRDDs.size} RDDs that were older than " +
    25. s"${time - rememberDuration}: ${oldRDDs.keys.mkString(", ")}")
    26. //清除依赖的DStream
    27. dependencies.foreach(_.clearMetadata(time))
    28. }

    关键的清理逻辑在代码中做了详细注释,首先清理DStream对应的RDD的元数据信息,然后清理RDD的数据,最后对DStream所依赖的DStream进行清理。

    回到JobGenerator的clearMetadata函数:

    1. if (shouldCheckpoint) {
    2. eventLoop.post(DoCheckpoint(time, clearCheckpointDataLater = true))
    3. } else {
    4. // If checkpointing is not enabled, then delete metadata information about
    5. // received blocks (block data not saved in any case). Otherwise, wait for
    6. // checkpointing of this batch to complete.
    7. val maxRememberDuration = graph.getMaxInputStreamRememberDuration()
    8. jobScheduler.receiverTracker.cleanupOldBlocksAndBatches(time - maxRememberDuration)
    9. jobScheduler.inputInfoTracker.cleanup(time - maxRememberDuration)
    10. markBatchFullyProcessed(time)
    11. }

    调用了ReceiverTracker的 cleanupOldBlocksAndBatches方法,最后调用了clearupOldBatches方法:

    1. def cleanupOldBatches(cleanupThreshTime: Time, waitForCompletion: Boolean): Unit = synchronized {
    2. require(cleanupThreshTime.milliseconds < clock.getTimeMillis())
    3. val timesToCleanup = timeToAllocatedBlocks.keys.filter { _ < cleanupThreshTime }.toSeq
    4. logInfo(s"Deleting batches: ${timesToCleanup.mkString(" ")}")
    5. if (writeToLog(BatchCleanupEvent(timesToCleanup))) {
    6. //将要删除的Batch数据清除
    7. timeToAllocatedBlocks --= timesToCleanup
    8. //清理WAL日志
    9. writeAheadLogOption.foreach(_.clean(cleanupThreshTime.milliseconds, waitForCompletion))
    10. } else {
    11. logWarning("Failed to acknowledge batch clean up in the Write Ahead Log.")
    12. }
    13. }

    可以看到ReceiverTracker的clearupOldBatches方法清理了Receiver数据,也就是Batch数据和WAL日志数据。
    最后对InputInfoTracker信息进行清理:
    1. def cleanup(batchThreshTime: Time): Unit = synchronized {
    2. val timesToCleanup = batchTimeToInputInfos.keys.filter(_ < batchThreshTime)
    3. logInfo(s"remove old batch metadata: ${timesToCleanup.mkString(" ")}")
    4. batchTimeToInputInfos --= timesToCleanup
    5. }
    这简单的清除了batchTimeToInputInfos 的输入信息。

    2.2 ClearCheckPoint 过程详解
    看一下clearCheckpointData的处理逻辑:
    1. /** Clear DStream checkpoint data for the given `time`. */
    2. private def clearCheckpointData(time: Time) {
    3. ssc.graph.clearCheckpointData(time)
    4. // All the checkpoint information about which batches have been processed, etc have
    5. // been saved to checkpoints, so its safe to delete block metadata and data WAL files
    6. val maxRememberDuration = graph.getMaxInputStreamRememberDuration()
    7. jobScheduler.receiverTracker.cleanupOldBlocksAndBatches(time - maxRememberDuration)
    8. jobScheduler.inputInfoTracker.cleanup(time - maxRememberDuration)
    9. markBatchFullyProcessed(time)
    10. }

    后面的ReceiverTraker和InputInforTracker的清理逻辑和ClearMetaData的相同,这分析DStreamGraph的clearCheckpointData方法:

    1. def clearCheckpointData(time: Time) {
    2. logInfo("Clearing checkpoint data for time " + time)
    3. this.synchronized {
    4. outputStreams.foreach(_.clearCheckpointData(time))
    5. }
    6. logInfo("Cleared checkpoint data for time " + time)
    7. }

    同样的调用了DStreamGraph中所有OutputDStream的clearCheckPiontData 方法:

    1. private[streaming] def clearCheckpointData(time: Time) {
    2. logDebug("Clearing checkpoint data")
    3. checkpointData.cleanup(time)
    4. dependencies.foreach(_.clearCheckpointData(time))
    5. logDebug("Cleared checkpoint data")
    6. }

    这里的核心逻辑在checkpointData.cleanup(time)方法,这里的CheckpointData 是 DStreamCheckpointData对象, DStreamCheckpointData的clearup方法如下:
    1. def cleanup(time: Time) {
    2. // 获取需要清理的Checkpoint 文件 时间
    3. timeToOldestCheckpointFileTime.remove(time) match {
    4. case Some(lastCheckpointFileTime) =>
    5. //获取需要删除的文件
    6. val filesToDelete = timeToCheckpointFile.filter(_._1 < lastCheckpointFileTime)
    7. logDebug("Files to delete: " + filesToDelete.mkString(","))
    8. filesToDelete.foreach {
    9. case (time, file) =>
    10. try {
    11. val path = new Path(file)
    12. if (fileSystem == null) {
    13. fileSystem = path.getFileSystem(dstream.ssc.sparkContext.hadoopConfiguration)
    14. }
    15. //  删除文件     
    16. fileSystem.delete(path, true)
    17. timeToCheckpointFile -= time
    18. logInfo("Deleted checkpoint file '" + file + "' for time " + time)
    19. } catch {
    20. case e: Exception =>
    21. logWarning("Error deleting old checkpoint file '" + file + "' for time " + time, e)
    22. fileSystem = null
    23. }
    24. }
    25. case None =>
    26. logDebug("Nothing to delete")
    27. }
    28. }

    可以看到checkpoint的清理,就是删除了指定时间以前的checkpoint文件。

    三、数据清理的触发
        3.1 ClearMetaData 过程的触发
    JobGenerator 生成job后,交给JobHandler执行, JobHandler的run方法中,会在job执行完后给JobScheduler 发送JobCompleted消息:
    1. _eventLoop = eventLoop
    2. if (_eventLoop != null) {
    3. _eventLoop.post(JobCompleted(job, clock.getTimeMillis()))
    4. }
    JobScheduler 收到JobCompleted 消息调用 handleJobCompletion 方法,源码如下:

    1. private def processEvent(event: JobSchedulerEvent) {
    2. try {
    3. event match {
    4. case JobStarted(job, startTime) => handleJobStart(job, startTime)
    5. case JobCompleted(job, completedTime) => handleJobCompletion(job, completedTime)
    6. case ErrorReported(m, e) => handleError(m, e)
    7. }
    8. } catch {
    9. case e: Throwable =>
    10. reportError("Error in job scheduler", e)
    11. }
    12. }

    在 JobScheduler 的handleJobCompletion方法中会调用JobGenerator的onBatchCompletion方法,我们看一下JobGenerator的 onBatchCompletion 方法的源码:

    1. def onBatchCompletion(time: Time) {
    2. eventLoop.post(ClearMetadata(time))
    3. }

    可以看到JobGenerator的onBatchCompletion方法给自己发送了ClearMetadata消息从而触发了ClearMetaData操作。

    3.2 ClearCheckPoint 过程的触发
        清理CheckPoint数据发生在CheckPoint完成之后,我们先看一下CheckPointHandler的run方法:

    1. // All done, print success
    2. val finishTime = System.currentTimeMillis()
    3. logInfo("Checkpoint for time " + checkpointTime + " saved to file '" + checkpointFile +
    4. "', took " + bytes.length + " bytes and " + (finishTime - startTime) + " ms")
    5. //调用JobGenerator的方法进行checkpoint数据清理
    6. jobGenerator.onCheckpointCompletion(checkpointTime, clearCheckpointDataLater)
    7. return

    可以看到在checkpoint完成后,会调用JobGenerator的onCheckpointCompletion方法进行checkpoint数据清理,我查看JobGenerator的onCheckpointCompletion方法源码:

    1. def onCheckpointCompletion(time: Time, clearCheckpointDataLater: Boolean) {
    2. if (clearCheckpointDataLater) {
    3. eventLoop.post(ClearCheckpointData(time))
    4. }
    5. }

    可以看到JobGenerator的onCheckpointCompletion方法中首先对传进来的 clearCheckpointDataLater 参数进行判断,如果该参数为true,就会给JobGenerator的eventLoop循环体发送ClearCheckpointData消息,从而触发clearCheckpointData 方法的调用,进行Checkpoint数据的清理。
    什么时候该参数会true呢?
    我们回到JobGenerator的 ClearMetadata 方法:

    1. private def clearMetadata(time: Time) {
    2. ssc.graph.clearMetadata(time)

    3. if (shouldCheckpoint) {
    4. //发送DoCheckpoint消息,并进行相应的Checkpoint数据清理
    5. eventLoop.post(DoCheckpoint(time, clearCheckpointDataLater = true))
    6. } else {

    7. val maxRememberDuration = graph.getMaxInputStreamRememberDuration()
    8. jobScheduler.receiverTracker.cleanupOldBlocksAndBatches(time - maxRememberDuration)
    9. jobScheduler.inputInfoTracker.cleanup(time - maxRememberDuration)
    10. markBatchFullyProcessed(time)
    11. }
    12. }

    可以看到在clearMetadata方法中,发送了DoCheckpoint消息,其中参数 clearCheckpointDataLater 为ture。Generator的eventLoop收到该消息后调用 doCheckpoint 方法:

    1. private def doCheckpoint(time: Time, clearCheckpointDataLater: Boolean) {
    2. if (shouldCheckpoint && (time - graph.zeroTime).isMultipleOf(ssc.checkpointDuration)) {
    3. logInfo("Checkpointing graph for time " + time)
    4. ssc.graph.updateCheckpointData(time)
    5. checkpointWriter.write(new Checkpoint(ssc, time), clearCheckpointDataLater)
    6. }
    7. }

    这里关键一步:调用了CheckpointWriter的write方法,注意此时参数 clearCheckpointDataLater 为true。我们进入该方法:

    1. def write(checkpoint: Checkpoint, clearCheckpointDataLater: Boolean) {
    2. try {
    3. val bytes = Checkpoint.serialize(checkpoint, conf)
    4. //将参数clearCheckpointDataLater传入CheckpoitWriteHandler
    5. executor.execute(new CheckpointWriteHandler(
    6. checkpoint.checkpointTime, bytes, clearCheckpointDataLater))
    7. logInfo("Submitted checkpoint of time " + checkpoint.checkpointTime + " writer queue")
    8. } catch {
    9. case rej: RejectedExecutionException =>
    10. logError("Could not submit checkpoint task to the thread pool executor", rej)
    11. }
    12. }

    可以看到此时参数 clearCheckpointDataLater 传入CheckpointWriteHandler 。这样Checkpoint完成之后就会发送ClearCheckpointData消息给JobGenerator进行Checkpoint数据的清理。

    原创文章,转载请注明:转载自 听风居士博客(http://www.cnblogs.com/zhouyf/)










     



  • 相关阅读:
    如何在宿主机上查看kvm虚拟机的IP
    virt-viewer 连kvm 虚机
    用virsh console vhosts 卡住
    sshpass 实现shell脚本直接加载密登录服务器
    maven创建helloword项目
    linux 安装maven
    xz -d Python-3.4.7.tar.xz
    查看哪个用户登录过服务器 记录 时间 和 ip
    两台linux服务器各有两个不同的用户 其中一个服务器可以无密码登录服务器
    maven私服nexus
  • 原文地址:https://www.cnblogs.com/zhouyf/p/5633026.html
Copyright © 2011-2022 走看看