zoukankan      html  css  js  c++  java
  • UOJ#221. 【NOI2016】循环之美 数论,杜教筛

    原文链接www.cnblogs.com/zhouzhendong/p/UOJ221.html

    题解

    首先把题目转化为求

    [sum_{x=1}^n sum_{y=1}^m [gcd(x,y) = 1] [ gcd(y,k) = 1] ]

    推式子:

    [sum_{x=1}^n sum_{y=1}^m [gcd(x,y) = 1] [ gcd(y,k) = 1]\ = sum_{i = 1}^{min(n,m)} mu(i) sum_{x=1}^{left lfloor frac n i ight floor } sum_{y=1}^{left lfloor frac m i ight floor } [gcd(iy,k) = 1]\ = sum_{i = 1}^{min(n,m)}left lfloor frac n i ight floor mu(i) [gcd(i,k) = 1] sum_{y=1}^{left lfloor frac m i ight floor } [gcd(y,k) = 1] ]

    整除分块一下,变成求

    [sum_{i = 1} ^ n mu(i) [gcd(i,k) = 1] ]

    推式子:

    [sum_{i = 1} ^ n mu(i) [gcd(i,k) = 1] \ = sum_{i = 1} ^ n mu(i) - sum_{i = 1} ^ n mu(i) [gcd(i,k) > 1] \ = sum_{i = 1} ^ nmu(i) - sum_{d>1,d|k} sum_{i = 1} ^ {lfloor frac n d floor} [gcd(id,k) = d] mu(id) ]

    其中

    [[gcd(id,k) = d] mu(id) \ = [gcd(id,k) = d] mu(i) mu(d) [gcd(i,d) = 1] \ = mu(d) [gcd(i,k) = 1] mu(i) ]

    所以,原式 =

    [sum_{i = 1} ^ nmu(i) - sum_{d>1,d|k} mu(d) sum_{i = 1} ^ {lfloor frac n d floor} mu(i) [gcd(i,k) = 1] ]

    大力杜教筛即可。

    代码

    #include <bits/stdc++.h>
    #define clr(x) memset(x,0,sizeof x)
    #define For(i,a,b) for (int i=(a);i<=(b);i++)
    #define Fod(i,b,a) for (int i=(b);i>=(a);i--)
    #define fi first
    #define se second
    #define pb(x) push_back(x)
    #define mp(x,y) make_pair(x,y)
    #define outval(x) cerr<<#x" = "<<x<<endl
    #define outtag(x) cerr<<"---------------"#x"---------------"<<endl
    #define outarr(a,L,R) cerr<<#a"["<<L<<".."<<R<<"] = ";
    						For(_x,L,R)cerr<<a[_x]<<" ";cerr<<endl;
    using namespace std;
    typedef long long LL;
    LL read(){
    	LL x=0,f=0;
    	char ch=getchar();
    	while (!isdigit(ch))
    		f|=ch=='-',ch=getchar();
    	while (isdigit(ch))
    		x=(x<<1)+(x<<3)+(ch^48),ch=getchar();
    	return f?-x:x;
    }
    const int N=1000005;
    int gcd(int a,int b){
    	return b?gcd(b,a%b):a;
    }
    int n,m,k;
    vector <int> v;
    int p[N],pcnt,u[N];
    void getprime(int n){
    	static int vis[N];
    	clr(vis),pcnt=0;
    	u[1]=1;
    	For(i,2,n){
    		if (!vis[i])
    			p[++pcnt]=i,u[i]=-1;
    		for (int j=1;j<=pcnt&&i*p[j]<=n;j++){
    			vis[i*p[j]]=1;
    			if (i%p[j])
    				u[i*p[j]]=-u[i];
    			else {
    				u[i*p[j]]=0;
    				break;
    			}
    		}
    	}
    }
    unordered_map <int,int> fu,U,fu2,U2;
    int GetU(int n){
    	if (fu[n])
    		return U[n];
    	int res=1;
    	for (int i=2,j;i<=n;i=j+1){
    		j=n/(n/i);
    		res-=GetU(n/i)*(j-i+1);
    	}
    	fu[n]=1;
    	return U[n]=res;
    }
    int GetU2(int n){
    	if (fu2[n])
    		return U2[n];
    	int res=GetU(n);
    	for (auto i : v)
    		if (i>1)
    			res-=(LL)u[i]*GetU2(n/i);
    	fu2[n]=1;
    	return U2[n]=res;
    }
    int calcK(int n){
    	int ans=0;
    	for (auto i : v)
    		ans+=u[i]*(n/i);
    	return ans;
    }
    int main(){
    	n=read(),m=read(),k=read();
    	getprime(1000000);
    	v.clear();
    	For(i,1,k)
    		if (k%i==0&&u[i])
    			v.pb(i);
    	U[0]=0,U2[0]=0,fu[0]=fu2[0]=1;
    	For(i,1,1000000){
    		fu[i]=1,U[i]=U[i-1]+u[i];
    		fu2[i]=1,U2[i]=U2[i-1]+(gcd(i,k)==1?u[i]:0);
    	}
    	LL ans=0;
    	for (int i=1,j;i<=n&&i<=m;i=j+1){
    		j=min(n/(n/i),m/(m/i));
    		ans+=(LL)(GetU2(j)-GetU2(i-1))*(n/i)*calcK(m/i);
    	}
    	cout<<ans<<endl;
    	return 0;
    }
    
  • 相关阅读:
    字符串复习笔记
    构造
    网络流复习笔记
    LCT学习笔记
    省选前的数据结构训练
    在windows安装并启动测试kafka
    Scala 原生操作MySQL
    Scala基础语法
    ORACLE查出表所有的触发器及触发器详细信息
    转载二,JAVA面试题
  • 原文地址:https://www.cnblogs.com/zhouzhendong/p/UOJ221.html
Copyright © 2011-2022 走看看