zoukankan      html  css  js  c++  java
  • 基础数据结构算法总结

    对本科使用的数据结构课本感情很深, 当初学的时候, 并不需要上机编程, 考试时只需写出伪代码即可. 而今, 实现的细节已经变得必须了, 所以, 再次拿出课本, 复习一下实现细节

    数据结构和算法

    1. 堆的实现(插入, 删除, 初始化, 以最大根为例) 

    2. 快排的实现

    3. 归并排序的实现

    4. 数组实现队列

    1. 堆的实现, 代码

    template <class T>
    class MaxHeap {
    public:
    	MaxHeap(int MaxHeapSize = 10);
    	~MaxHeap(delete [] heap);
    
    	int Size() const {
    		return CurrentSize;
    	}
    
    	T Max() const {
    		if(CurrentSize == 0)
    			return OutOfBounds();
    		return heap[1];
    	}
    
    	MaxHeap<T>& Insert(const T &x);
    	MaxHeap<T>& Delete(T &x);
    
    	void Initialize(T a[], int size, int ArraySize);
    
    private:
    	int CurrentSize, MaxSize;
    	T *heap;
    };
    
    template <class T>
    MaxHeap<T>::MaxHeap(int MaxHeapSize) {
    	MaxSize = MaxHeapSize;
    	CurrentSize = 0;
    	heap = new T[MaxHeapSize+1];
    }
    
    template <class T>
    MaxHeap<T>& MaxHeap<T>::Insert(const T &x) {
    	if(CurrentSize == MaxSize) throw NoMem();
    
    	int i = ++ CurrentSize;
    
    	while(i != 1 && x > heap[i/2]) {
    		heap[i] = heap[i/2];
    		i /= 2;
    	}
    
    	heap[i] = x;
    	return *this;
    }
    
    template <class T>
    MaxHeap<T>& MaxHeap::Delete(T &x) {
    	if(CurrentSize == 0) return OutOfBounds();
    
    	x = heap[1];
    
    	T y = heap[CurrentSize--];
    
    	int i = 1, ci = 2*i;
    
    	while(ci <= CurrentSize) {
    		if(ci < CurrentSize && heap[ci] < heap[ci+1])
    			ci ++;
    
    		if(y >= heap[ci]) break;
    
    		heap[i] = heap[ci];
    
    		i = ci;
    		ci *= 2;
    	}
    	heap[i] = y;
    
    	return *this;
    }
    
    template <class  T>
    void MaxHeap<T>::Initialize(T a[], int size, int ArraySize) {
    	delete [] heap;
    	heap = a;
    	CurrentSize = size;
    	MaxSize = ArraySize;
    
    	for(int i = CurrentSize/2; i >= 1; i --)  {
    		T y = heap[i];
    
    		int c= 2 * i;
    
    		while(c <= CurrentSize) {
    			if(c < CurrentSize && heap[c] < heap[c+1])
    				c ++;
    			if(y >= heap[c]) break;
    
    			heap[c/2] = heap[c];
    			c *= 2;
    		}
    		heap[c/2] = y;
    	}
    }
    

      

    2. 快排的实现

    template <class T>
    void QuickSort(T *a, int n)  {
    	quickSort(a, 0, n-1);
    }
    
    template <class T> 
    void quickSort(T *a, int l, int r)  {
    	if(l >= r) return;
    
    	int i = l; j = r+1;
    	T pivot = a[i];
    
    	// it should be aware that replace T[i] < pivot to T[i] <= pivot
    	// the correctness of program can be remained
    
    	while(true)  {
    		do  {
    			i = i + 1;
    		}  while(T[i] < pivot);
    		
    		do  {
    			j = j - 1;
    		}  while(T[j] > pivot);
    
    		if(i >= j) break;
    
    		swap(T[i], T[j]);
    	}
    
    	a[l] = a[j];
    	a[j] = pivot;
    
    	quickSort(T, l, j-1);
    	quickSort(T, j+1, r);
    }
    

      

    3. 归并排序

    template <class T>
    void MergeSort(T a[], int n)  {
    	T *b = new T[n];
    
    	int seg = 1; // the size of segment
    	while(seg < n)  {
    		MergePass(a, b, seg, n);
    		seg ++;
    		MergePass(b, a, seg, n);
    	}
    	delete []b;
    }
    
    template <class T>
    void MergePass(T a[], T b[], int seg, int n)  {
    	int i = 0;
    
    	while(i < n - 2*seg)  {
    		Merge(a, b, i, i+seg-1, i+2*seg-1);
    		i += 2*seg;
    	}
    
    	if(i < n - seg)  {
    		Merge(a, b, i+seg-1, n-1);
    	}  else  {
    		for(int j = i; j <= n-1; j ++)
    			b[j] = a[j];
    	}
    }
    
    template <class T>
    void Merge(T a[], T b[], int l, int m, int r)  {
    	int i = l, j = m+1, k = l;
    
    	while(i <= m && j <= r)  {
    		if(a[i] < b[j])  {
    			b[l++] = a[i++];
    		}  else  {
    			b[l++] = b[j++];
    		}
    	}
    
    	while(i < m)  {
    		b[l++] = a[i++];
    	}
    	while(j < m)  {
    		b[l++] = b[j++];
    	}
    }
    

      

    4. 数组实现队列

    template <class T>
    class Queue {
    public:
    	Queue(int MaxQueueSize = 10);
    	~Queue() {
    		delete []queue;
    	}
    
    	bool IsEmpty() const {
    		return (front == rear);
    	}
    	bool IsFull() const {
    		return (rear+1)%MaxSize == front ? 1:0;
    	}
    
    	T First() const;
    	T Last() const;
    
    	Queue<T>& Add(const T &x);
    	Queue<T>& Delete();
    
    private:
    	int front;
    	int rear;
    	int MaxSize;
    	T *queue;
    };
    
    template <class T>
    Queue<T>::Queue(int MaxQueueSize) {
    	MaxSize = MaxQueueSize + 1;
    	queue = new T[MaxSize];
    	front = rear = 0;
    }
    
    template <class T>
    T Queue<T>::First() const {
    	if(IsEmpty()) throw OutOfBounds();
    	return queue[(front+1)%MaxSize];
    }
    template <class T>
    T Queue<T>::Last() const {
    	IsFull(IsEmpty()) throw OutOfBounds();
    	return queue[rear];
    }
    
    template<class T>
    Queue<T>& Queue::Add(const T &x) {
    	if(IsFull()) throw NoMem();
    	rear = (rear+1) % MaxSize;
    	queue[rear] = x;
    	return *this;
    }
    template <class T>
    Queue<T>& Queue::Delete() {
    	if(IsEmpty()) throw OutOfBounds();
    	front = (front+1) % MaxSize;
    	x = queue[front];
    	return *this;
    }
    

      

  • 相关阅读:
    harbor1.9仓库同步迁移
    接口强制删除namespace 为Terminating的方法
    k8s 命令自动补全
    docker harbor 搭建&配置http/https 方法
    docker harbor 清理释放存储空间
    强化学习系列
    Kaggle的Outbrain点击预测比赛分析
    talkingdata比赛分析
    keras模型总结
    深度神经网络多任务学习(Multi-Task Learning in Deep Neural Networks)
  • 原文地址:https://www.cnblogs.com/zhouzhuo/p/3684420.html
Copyright © 2011-2022 走看看