题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4651
题意:求n的整数拆为Σ i 的个数。
一般的递归做法,或者生成函数做法肯定会超时的。。。
然后要奇葩的用到一个<五边形数定理>,然后根据公式递推就可以了,先预处理下,复杂度O(n*sqrt(n))..
1 //STATUS:C++_AC_796MS_1012KB 2 #include <functional> 3 #include <algorithm> 4 #include <iostream> 5 //#include <ext/rope> 6 #include <fstream> 7 #include <sstream> 8 #include <iomanip> 9 #include <numeric> 10 #include <cstring> 11 #include <cassert> 12 #include <cstdio> 13 #include <string> 14 #include <vector> 15 #include <bitset> 16 #include <queue> 17 #include <stack> 18 #include <cmath> 19 #include <ctime> 20 #include <list> 21 #include <set> 22 #include <map> 23 using namespace std; 24 //#pragma comment(linker,"/STACK:102400000,102400000") 25 //using namespace __gnu_cxx; 26 //define 27 #define pii pair<int,int> 28 #define mem(a,b) memset(a,b,sizeof(a)) 29 #define lson l,mid,rt<<1 30 #define rson mid+1,r,rt<<1|1 31 #define PI acos(-1.0) 32 //typedef 33 typedef __int64 LL; 34 typedef unsigned __int64 ULL; 35 //const 36 const int N=100010; 37 const int INF=0x3f3f3f3f; 38 const int MOD= 1000000007,STA=8000010; 39 const LL LNF=1LL<<55; 40 const double EPS=1e-9; 41 const double OO=1e30; 42 const int dx[4]={-1,0,1,0}; 43 const int dy[4]={0,1,0,-1}; 44 const int day[13]={0,31,28,31,30,31,30,31,31,30,31,30,31}; 45 //Daily Use ... 46 inline int sign(double x){return (x>EPS)-(x<-EPS);} 47 template<class T> T gcd(T a,T b){return b?gcd(b,a%b):a;} 48 template<class T> T lcm(T a,T b){return a/gcd(a,b)*b;} 49 template<class T> inline T lcm(T a,T b,T d){return a/d*b;} 50 template<class T> inline T Min(T a,T b){return a<b?a:b;} 51 template<class T> inline T Max(T a,T b){return a>b?a:b;} 52 template<class T> inline T Min(T a,T b,T c){return min(min(a, b),c);} 53 template<class T> inline T Max(T a,T b,T c){return max(max(a, b),c);} 54 template<class T> inline T Min(T a,T b,T c,T d){return min(min(a, b),min(c,d));} 55 template<class T> inline T Max(T a,T b,T c,T d){return max(max(a, b),max(c,d));} 56 //End 57 58 int w[N]; 59 LL f[N]; 60 int T,n; 61 62 int main(){ 63 // freopen("in.txt","r",stdin); 64 int i,j,k=1; 65 w[0]=0; 66 for(i=1;w[k-1]<=100000;i++){ 67 w[k++]=(3*i*i-i)/2; 68 w[k++]=(3*i*i+i)/2; 69 } 70 f[0]=1; 71 for(i=1;i<=100000;i++){ 72 f[i]=0; 73 for(j=1;w[j]<=i;j++){ 74 if(((j-1)>>1)&1)f[i]=(f[i]-f[i-w[j]])%MOD; 75 else f[i]=(f[i]+f[i-w[j]])%MOD; 76 } 77 } 78 scanf("%d",&T); 79 while(T--) 80 { 81 scanf("%d",&n); 82 printf("%I64d ",(f[n]+MOD)%MOD); 83 } 84 return 0; 85 }