zoukankan      html  css  js  c++  java
  • HDU-4336 Card Collector 概率DP

      题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4336

      题意:买食品收集n个卡片,每个卡片的概率分别是pi,且Σp[i]<=1,求收集n个卡片需要买的食品数的期望。

      压缩DP:把每个食品用二进制表示,0和1分别表示没有卡片和已经收集到此卡片的期望,则

         f[s]=(1-Σp[i])*f[s]+Σp[j]*f[s]+Σp[k]*f[s|(1<<k)]  

          s表示状态,i表示所有卡片编号,j表示s状态中已经有的卡片编号,k表示s状态中没有的卡片编号

      ->  Σp[i]*f[s]=Σp[i]*f[s|(1<<i)] 

      或者容斥原理做:

      压缩DP:

     1 //STATUS:C++_AC_281MS_7128KB
     2 #include <functional>
     3 #include <algorithm>
     4 #include <iostream>
     5 //#include <ext/rope>
     6 #include <fstream>
     7 #include <sstream>
     8 #include <iomanip>
     9 #include <numeric>
    10 #include <cstring>
    11 #include <cassert>
    12 #include <cstdio>
    13 #include <string>
    14 #include <vector>
    15 #include <bitset>
    16 #include <queue>
    17 #include <stack>
    18 #include <cmath>
    19 #include <ctime>
    20 #include <list>
    21 #include <set>
    22 #include <map>
    23 using namespace std;
    24 //#pragma comment(linker,"/STACK:102400000,102400000")
    25 //using namespace __gnu_cxx;
    26 //define
    27 #define pii pair<int,int>
    28 #define mem(a,b) memset(a,b,sizeof(a))
    29 #define lson l,mid,rt<<1
    30 #define rson mid+1,r,rt<<1|1
    31 #define PI acos(-1.0)
    32 //typedef
    33 typedef __int64 LL;
    34 typedef unsigned __int64 ULL;
    35 //const
    36 const int N=(1<<20)+10;
    37 const int INF=0x3f3f3f3f;
    38 const int MOD= 1000000007,STA=8000010;
    39 const LL LNF=1LL<<55;
    40 const double EPS=1e-9;
    41 const double OO=1e30;
    42 const int dx[4]={-1,0,1,0};
    43 const int dy[4]={0,1,0,-1};
    44 const int day[13]={0,31,28,31,30,31,30,31,31,30,31,30,31};
    45 //Daily Use ...
    46 inline int sign(double x){return (x>EPS)-(x<-EPS);}
    47 template<class T> T gcd(T a,T b){return b?gcd(b,a%b):a;}
    48 template<class T> T lcm(T a,T b){return a/gcd(a,b)*b;}
    49 template<class T> inline T lcm(T a,T b,T d){return a/d*b;}
    50 template<class T> inline T Min(T a,T b){return a<b?a:b;}
    51 template<class T> inline T Max(T a,T b){return a>b?a:b;}
    52 template<class T> inline T Min(T a,T b,T c){return min(min(a, b),c);}
    53 template<class T> inline T Max(T a,T b,T c){return max(max(a, b),c);}
    54 template<class T> inline T Min(T a,T b,T c,T d){return min(min(a, b),min(c,d));}
    55 template<class T> inline T Max(T a,T b,T c,T d){return max(max(a, b),max(c,d));}
    56 //End
    57 
    58 double p[23],f[N];
    59 int n;
    60 
    61 int main(){
    62  //   freopen("in.txt","r",stdin);
    63     int i,j,up;
    64     double s;
    65     while(~scanf("%d",&n))
    66     {
    67         for(i=0;i<n;i++){
    68             scanf("%lf",&p[i]);
    69         }
    70         up=(1<<n)-1;
    71         f[up]=0;
    72         for(i=up-1;i>=0;i--){
    73             f[i]=1;s=0;
    74             for(j=0;j<n;j++){
    75                 if(i&(1<<j))continue;
    76                 f[i]+=p[j]*f[i|(1<<j)];
    77                 s+=p[j];
    78             }
    79             f[i]/=s;
    80         }
    81 
    82         printf("%lf
    ",f[0]);
    83     }
    84     return 0;
    85 }

      容斥原理:

     1 //STATUS:C++_AC_203MS_244KB
     2 #include <functional>
     3 #include <algorithm>
     4 #include <iostream>
     5 //#include <ext/rope>
     6 #include <fstream>
     7 #include <sstream>
     8 #include <iomanip>
     9 #include <numeric>
    10 #include <cstring>
    11 #include <cassert>
    12 #include <cstdio>
    13 #include <string>
    14 #include <vector>
    15 #include <bitset>
    16 #include <queue>
    17 #include <stack>
    18 #include <cmath>
    19 #include <ctime>
    20 #include <list>
    21 #include <set>
    22 #include <map>
    23 using namespace std;
    24 //#pragma comment(linker,"/STACK:102400000,102400000")
    25 //using namespace __gnu_cxx;
    26 //define
    27 #define pii pair<int,int>
    28 #define mem(a,b) memset(a,b,sizeof(a))
    29 #define lson l,mid,rt<<1
    30 #define rson mid+1,r,rt<<1|1
    31 #define PI acos(-1.0)
    32 //typedef
    33 typedef __int64 LL;
    34 typedef unsigned __int64 ULL;
    35 //const
    36 const int N=(1<<20)+10;
    37 const int INF=0x3f3f3f3f;
    38 const int MOD= 1000000007,STA=8000010;
    39 const LL LNF=1LL<<55;
    40 const double EPS=1e-9;
    41 const double OO=1e30;
    42 const int dx[4]={-1,0,1,0};
    43 const int dy[4]={0,1,0,-1};
    44 const int day[13]={0,31,28,31,30,31,30,31,31,30,31,30,31};
    45 //Daily Use ...
    46 inline int sign(double x){return (x>EPS)-(x<-EPS);}
    47 template<class T> T gcd(T a,T b){return b?gcd(b,a%b):a;}
    48 template<class T> T lcm(T a,T b){return a/gcd(a,b)*b;}
    49 template<class T> inline T lcm(T a,T b,T d){return a/d*b;}
    50 template<class T> inline T Min(T a,T b){return a<b?a:b;}
    51 template<class T> inline T Max(T a,T b){return a>b?a:b;}
    52 template<class T> inline T Min(T a,T b,T c){return min(min(a, b),c);}
    53 template<class T> inline T Max(T a,T b,T c){return max(max(a, b),c);}
    54 template<class T> inline T Min(T a,T b,T c,T d){return min(min(a, b),min(c,d));}
    55 template<class T> inline T Max(T a,T b,T c,T d){return max(max(a, b),max(c,d));}
    56 //End
    57 
    58 double p[23];
    59 int n;
    60 
    61 int main(){
    62  //   freopen("in.txt","r",stdin);
    63     int i,j,up,cnt;
    64     double ans,s;
    65     while(~scanf("%d",&n))
    66     {
    67         for(i=0;i<n;i++){
    68             scanf("%lf",&p[i]);
    69         }
    70         up=(1<<n)-1;ans=0;
    71         for(i=1;i<=up;i++){
    72             s=0;
    73             for(j=cnt=0;j<n;j++){
    74                 if(i&(1<<j)){
    75                     cnt++;
    76                     s+=p[j];
    77                 }
    78             }
    79             if(cnt&1)ans+=1/s;
    80             else ans-=1/s;
    81         }
    82 
    83         printf("%lf
    ",ans);
    84     }
    85     return 0;
    86 }
  • 相关阅读:
    【Lintcode】112.Remove Duplicates from Sorted List
    【Lintcode】087.Remove Node in Binary Search Tree
    【Lintcode】011.Search Range in Binary Search Tree
    【Lintcode】095.Validate Binary Search Tree
    【Lintcode】069.Binary Tree Level Order Traversal
    【Lintcode】088.Lowest Common Ancestor
    【Lintcode】094.Binary Tree Maximum Path Sum
    【算法总结】二叉树
    库(静态库和动态库)
    从尾到头打印链表
  • 原文地址:https://www.cnblogs.com/zhsl/p/3244041.html
Copyright © 2011-2022 走看看