zoukankan      html  css  js  c++  java
  • HDU-4655 Cut Pieces 数学,贪心

      题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4655

      先不考虑相临的有影响,那么总数就是n*prod(ai),然后减去每个相邻的对总数的贡献Σ( Min(a[i],a[i+1])*prod(i-1)*prod(i+2) ),其中prod(i)为[1,i-1]这个区间a[i]的积,prod(i+2)表示的是[i+2,n]这个区间,答案就是n*prod(ai)-Σ( Min(a[i],a[i+1])*prod(i-1)*prod(i+2) ),可以得到取得最大值是ai的排列就是最小,最大,次小,次大,例如:1 2 3 4 -> 1 4 2 3。然后就是一个DP转移了,方程很好写。。

     1 //STATUS:C++_AC_468MS_19068KB
     2 #include <functional>
     3 #include <algorithm>
     4 #include <iostream>
     5 //#include <ext/rope>
     6 #include <fstream>
     7 #include <sstream>
     8 #include <iomanip>
     9 #include <numeric>
    10 #include <cstring>
    11 #include <cassert>
    12 #include <cstdio>
    13 #include <string>
    14 #include <vector>
    15 #include <bitset>
    16 #include <queue>
    17 #include <stack>
    18 #include <cmath>
    19 #include <ctime>
    20 #include <list>
    21 #include <set>
    22 #include <map>
    23 using namespace std;
    24 //#pragma comment(linker,"/STACK:102400000,102400000")
    25 //using namespace __gnu_cxx;
    26 //define
    27 #define pii pair<int,int>
    28 #define mem(a,b) memset(a,b,sizeof(a))
    29 #define lson l,mid,rt<<1
    30 #define rson mid+1,r,rt<<1|1
    31 #define PI acos(-1.0)
    32 //typedef
    33 typedef __int64 LL;
    34 typedef unsigned __int64 ULL;
    35 //const
    36 const int N=1000010;
    37 const int INF=0x3f3f3f3f;
    38 const int MOD= 1000000007,STA=8000010;
    39 const LL LNF=1LL<<55;
    40 const double EPS=1e-9;
    41 const double OO=1e30;
    42 const int dx[4]={-1,0,1,0};
    43 const int dy[4]={0,1,0,-1};
    44 const int day[13]={0,31,28,31,30,31,30,31,31,30,31,30,31};
    45 //Daily Use ...
    46 inline int sign(double x){return (x>EPS)-(x<-EPS);}
    47 template<class T> T gcd(T a,T b){return b?gcd(b,a%b):a;}
    48 template<class T> T lcm(T a,T b){return a/gcd(a,b)*b;}
    49 template<class T> inline T lcm(T a,T b,T d){return a/d*b;}
    50 template<class T> inline T Min(T a,T b){return a<b?a:b;}
    51 template<class T> inline T Max(T a,T b){return a>b?a:b;}
    52 template<class T> inline T Min(T a,T b,T c){return min(min(a, b),c);}
    53 template<class T> inline T Max(T a,T b,T c){return max(max(a, b),c);}
    54 template<class T> inline T Min(T a,T b,T c,T d){return min(min(a, b),min(c,d));}
    55 template<class T> inline T Max(T a,T b,T c,T d){return max(max(a, b),max(c,d));}
    56 //End
    57 
    58 LL num[N],s[N];
    59 LL f[N],p[N];
    60 int T,n;
    61 
    62 int main(){
    63  //   freopen("in.txt","r",stdin);
    64     int i,j,mid;
    65     LL low,hig;
    66     scanf("%d",&T);
    67     while(T--)
    68     {
    69         scanf("%d",&n);
    70         for(i=1;i<=n;i++)
    71             scanf("%I64d",&num[i]);
    72         sort(num+1,num+n+1);
    73         mid=(n+1)>>1;
    74         for(i=1;i<=n;i+=2){
    75             s[i]=num[(i+1)>>1];
    76             s[i+1]=num[n-((i+1)>>1)+1];
    77         }
    78         p[0]=1;
    79         for(i=1;i<=n;i++)p[i]=(p[i-1]*s[i])%MOD;
    80         f[1]=s[1];
    81         for(i=2;i<=n;i++){
    82             low=Min(s[i-1],s[i]);
    83             hig=Max(0LL,s[i]-s[i-1]);
    84             f[i]=( low*(f[i-1]+p[i-1]-p[i-2])%MOD+hig*(f[i-1]+p[i-1])%MOD )%MOD;
    85         }
    86 
    87         printf("%I64d
    ",(f[n]+MOD)%MOD);
    88     }
    89     return 0;
    90 }
  • 相关阅读:
    java编码过滤器
    DAO设计模式
    常用的SQL语句
    IO流总结
    IO流的登录与注册
    设计模式之模板方法模式(Template Method)详解及代码示例
    设计模式之享元模式(Flyweight)详解及代码示例
    设计模式之桥接模式(Bridge)详解及代码示例
    设计模式之组合模式(Composite)详解及代码示例
    设计模式之外观模式(Facade)详解及代码示例
  • 原文地址:https://www.cnblogs.com/zhsl/p/3249369.html
Copyright © 2011-2022 走看看