zoukankan      html  css  js  c++  java
  • ZOJ-3686 A Simple Tree Problem 线段树

      题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3686

      题意:给定一颗有根树,每个节点有0和1两种值。有两种操作:o a操作,把以a为根节点的子树的权值全部取反;q a操作,求以a为根节点的子树权值为1的节点个数。

      先求出树的先序遍历结果,并且记录每颗子树的节点个数,然后就可以用线段树维护了。。

      1 //STATUS:C++_AC_240MS_6524KB
      2 #include <functional>
      3 #include <algorithm>
      4 #include <iostream>
      5 //#include <ext/rope>
      6 #include <fstream>
      7 #include <sstream>
      8 #include <iomanip>
      9 #include <numeric>
     10 #include <cstring>
     11 #include <cassert>
     12 #include <cstdio>
     13 #include <string>
     14 #include <vector>
     15 #include <bitset>
     16 #include <queue>
     17 #include <stack>
     18 #include <cmath>
     19 #include <ctime>
     20 #include <list>
     21 #include <set>
     22 #include <map>
     23 using namespace std;
     24 //#pragma comment(linker,"/STACK:102400000,102400000")
     25 //using namespace __gnu_cxx;
     26 //define
     27 #define pii pair<int,int>
     28 #define mem(a,b) memset(a,b,sizeof(a))
     29 #define lson l,mid,rt<<1
     30 #define rson mid+1,r,rt<<1|1
     31 #define PI acos(-1.0)
     32 //typedef
     33 typedef long long LL;
     34 typedef unsigned long long ULL;
     35 //const
     36 const int N=100010;
     37 const int INF=0x3f3f3f3f;
     38 const int MOD=1e+7,STA=8000010;
     39 const LL LNF=1LL<<60;
     40 const double EPS=1e-8;
     41 const double OO=1e15;
     42 const int dx[4]={-1,0,1,0};
     43 const int dy[4]={0,1,0,-1};
     44 const int day[13]={0,31,28,31,30,31,30,31,31,30,31,30,31};
     45 //Daily Use ...
     46 inline int sign(double x){return (x>EPS)-(x<-EPS);}
     47 template<class T> T gcd(T a,T b){return b?gcd(b,a%b):a;}
     48 template<class T> T lcm(T a,T b){return a/gcd(a,b)*b;}
     49 template<class T> inline T lcm(T a,T b,T d){return a/d*b;}
     50 template<class T> inline T Min(T a,T b){return a<b?a:b;}
     51 template<class T> inline T Max(T a,T b){return a>b?a:b;}
     52 template<class T> inline T Min(T a,T b,T c){return min(min(a, b),c);}
     53 template<class T> inline T Max(T a,T b,T c){return max(max(a, b),c);}
     54 template<class T> inline T Min(T a,T b,T c,T d){return min(min(a, b),min(c,d));}
     55 template<class T> inline T Max(T a,T b,T c,T d){return max(max(a, b),max(c,d));}
     56 //End
     57 
     58 int first[N],next[N*2],e[N*2],ra[N],id[N],sum[N],one[N<<2],rev[N<<2];
     59 int n,m,mt,cnt,ans;
     60 
     61 void adde(int a,int b)
     62 {
     63     e[mt]=b;
     64     next[mt]=first[a],first[a]=mt++;
     65     e[mt]=a;
     66     next[mt]=first[b],first[b]=mt++;
     67 }
     68 
     69 int dfs(int u,int fa)
     70 {
     71     ra[cnt++]=u;
     72     int i,j;
     73     sum[u]=1;
     74     for(i=first[u];i!=-1;i=next[i]){
     75         if(e[i]==fa)continue;
     76         sum[u]+=dfs(e[i],u);
     77     }
     78     return sum[u];
     79 }
     80 
     81 void pushdown(int rt,int llen,int rlen)
     82 {
     83     if(rev[rt]){
     84         rev[rt]=0;
     85         one[rt<<1]=llen-one[rt<<1];
     86         one[rt<<1|1]=rlen-one[rt<<1|1];
     87         rev[rt<<1]^=1,rev[rt<<1|1]^=1;
     88     }
     89 }
     90 
     91 void update(int l,int r,int rt,int L,int R)
     92 {
     93     if(L<=l && r<=R){
     94         rev[rt]^=1;
     95         one[rt]=r-l+1-one[rt];
     96         return ;
     97     }
     98     int mid=(l+r)>>1;
     99     pushdown(rt,mid-l+1,r-mid);
    100     if(L<=mid)update(lson,L,R);
    101     if(R>mid)update(rson,L,R);
    102     one[rt]=one[rt<<1]+one[rt<<1|1];
    103 }
    104 
    105 void query(int l,int r,int rt,int L,int R)
    106 {
    107     if(L<=l && r<=R){
    108         ans+=one[rt];
    109         return ;
    110     }
    111     int mid=(l+r)>>1;
    112     pushdown(rt,mid-l+1,r-mid);
    113     if(L<=mid)query(lson,L,R);
    114     if(R>mid)query(rson,L,R);
    115     one[rt]=one[rt<<1]+one[rt<<1|1];
    116 }
    117 
    118 int main()
    119 {
    120   //  freopen("in.txt","r",stdin);
    121     int i,j,t;
    122     char op[2];
    123     while(~scanf("%d%d",&n,&m))
    124     {
    125         mem(first,-1);mt=0;
    126         for(i=2;i<=n;i++){
    127             scanf("%d",&t);
    128             adde(t,i);
    129         }
    130         cnt=1;
    131         dfs(1,-1);
    132         for(i=1;i<=n;i++)id[ra[i]]=i;
    133 
    134         mem(one,0);mem(rev,0);
    135         while(m--){
    136             scanf("%s%d",op,&t);
    137             if(op[0]=='o'){
    138                 update(1,n,1,id[t],id[t]+sum[t]-1);
    139             }
    140             else {
    141                 ans=0;
    142                 query(1,n,1,id[t],id[t]+sum[t]-1);
    143                 printf("%d
    ",ans);
    144             }
    145         }
    146         putchar('
    ');
    147     }
    148     return 0;
    149 }
  • 相关阅读:
    Kafka文件存储机制那些事(转发)
    Kafka文件存储机制那些事(转发)
    消息队列设计精要(转发)
    RocketMQ原理解析-Broker(转发)
    Apache Kafka:下一代分布式消息系统(转发)
    新浪技术分享:我们如何扛下32亿条实时日志的分析处理(转发)
    消息队列技术介绍(转发)
    confluent kafka for .net
    kafka参考资料
    kafka架构(转发)
  • 原文地址:https://www.cnblogs.com/zhsl/p/3578835.html
Copyright © 2011-2022 走看看