zoukankan      html  css  js  c++  java
  • 中级篇-内置函数 (map/filter/reduce)

    1、map()

     1 array=[1,3,4,71,2]
     2 
     3 ret=[]
     4 for i in array:
     5     ret.append(i**2)
     6 print(ret)
     7 
     8 #如果我们有一万个列表,那么你只能把上面的逻辑定义成函数
     9 def map_test(array):
    10     ret=[]
    11     for i in array:
    12         ret.append(i**2)
    13     return ret
    14 
    15 print(map_test(array))
    16 
    17 #如果我们的需求变了,不是把列表中每个元素都平方,还有加1,减一,那么可以这样
    18 def add_num(x):
    19     return x+1
    20 def map_test(func,array):
    21     ret=[]
    22     for i in array:
    23         ret.append(func(i))
    24     return ret
    25 
    26 print(map_test(add_num,array))
    27 #可以使用匿名函数
    28 print(map_test(lambda x:x-1,array))
    29 
    30 
    31 #上面就是map函数的功能,map得到的结果是可迭代对象
    32 print(list(map(lambda x:x-1,range(5))))
      print(list(map(lambda x, y: x + y, [1, 3, 5, 7, 9], [2, 4, 6, 8, 10])))


    33 map函数

    结论:
    map() 会根据提供的函数对指定序列做映射

     map() 函数语法:

    map(function, iterable, ...)


    2、filter()

     1 #电影院聚集了一群看电影bb的傻逼,让我们找出他们
     2 movie_people=['alex','wupeiqi','yuanhao','sb_alex','sb_wupeiqi','sb_yuanhao']
     3 
     4 def tell_sb(x):
     5     return x.startswith('sb')
     6 
     7 
     8 def filter_test(func,array):
     9     ret=[]
    10     for i in array:
    11         if func(i):
    12             ret.append(i)
    13     return ret
    14 
    15 print(filter_test(tell_sb,movie_people))
    16 
    17 
    18 #函数filter,返回可迭代对象
    19 print(filter(lambda x:x.startswith('sb'),movie_people))
    20 
    21 filter函数

    3、reduce()

     1 from functools import reduce
     2 #合并,得一个合并的结果
     3 array_test=[1,2,3,4,5,6,7]
     4 array=range(100)
     5 
     6 #报错啊,res没有指定初始值
     7 def reduce_test(func,array):
     8     l=list(array)
     9     for i in l:
    10         res=func(res,i)
    11     return res
    12 
    13 # print(reduce_test(lambda x,y:x+y,array))
    14 
    15 #可以从列表左边弹出第一个值
    16 def reduce_test(func,array):
    17     l=list(array)
    18     res=l.pop(0)
    19     for i in l:
    20         res=func(res,i)
    21     return res
    22 
    23 print(reduce_test(lambda x,y:x+y,array))
    24 
    25 #我们应该支持用户自己传入初始值
    26 def reduce_test(func,array,init=None):
    27     l=list(array)
    28     if init is None:
    29         res=l.pop(0)
    30     else:
    31         res=init
    32     for i in l:
    33         res=func(res,i)
    34     return res
    35 
    36 print(reduce_test(lambda x,y:x+y,array))
    37 print(reduce_test(lambda x,y:x+y,array,50))
    38 
    39 reduce函数

    4、总结

    # map() ---对列表元素统一处理,列表的元素不变,处理方法可以用隐函数lambda
    array =[1,3,4,71,2]
    print(list(map(lambda x:x+1,array)))
    
    # filter() ---对列表元素过滤掉不符合的,留下符合条件的元素组成新的列表
    name=["a-sb","b","c","d-sb"]
    print(list(filter(lambda x:x.endswith('sb'),name)))
    print(list(filter(lambda x:not x.endswith('sb'),name)))
    
    #reduce() ---把列表变成一个值,处理方法隐函数lambda
    from functools import reduce
    array =[1,3,4,10,2]
    print(reduce(lambda x,y:x*y,array))
     1 #当然了,map,filter,reduce,可以处理所有数据类型
     2 
     3 name_dic=[
     4     {'name':'alex','age':1000},
     5     {'name':'wupeiqi','age':10000},
     6     {'name':'yuanhao','age':9000},
     7     {'name':'linhaifeng','age':18},
     8 ]
     9 #利用filter过滤掉千年王八,万年龟,还有一个九千岁
    10 def func(x):
    11     age_list=[1000,10000,9000]
    12     return x['age'] not in age_list
    13 
    14 
    15 res=filter(func,name_dic)
    16 for i in res:
    17     print(i)
    18 
    19 res=filter(lambda x:x['age'] == 18,name_dic)
    20 for i in res:
    21     print(i)
    22 
    23 
    24 #reduce用来计算1到100的和
    25 from functools import reduce
    26 print(reduce(lambda x,y:x+y,range(100),100))
    27 print(reduce(lambda x,y:x+y,range(1,101)))
    28 
    29 #用map来处理字符串列表啊,把列表中所有人都变成sb,比方alex_sb
    30 name=['alex','wupeiqi','yuanhao']
    31 
    32 res=map(lambda x:x+'_sb',name)
    33 for i in res:
    34     print(i)
  • 相关阅读:
    Python合集之文件操作(二)
    Python合集之文件操作(一)
    Python合集之异常(二)
    Python合集之异常(一)
    Python合集之模块(五)
    Visual Studio 配置额外工具 Windows Terminal 等
    CMakeList.txt
    alpha智能图像(全栈的进阶之路)
    位运算实现多状态控制
    缓存函数 memorize
  • 原文地址:https://www.cnblogs.com/zhuanfang/p/12986259.html
Copyright © 2011-2022 走看看