zoukankan      html  css  js  c++  java
  • 大聊PYthon----生成器

    再说迭代器与生成器之前,先说一说列表生成式

    列表生成式

    什么是列表生成式呢?

    这个非常简单!

    先看看普通青年版的!

    >>> a
    [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
    >>> b = []
    >>> for i in a:b.append(i+1)
    ... 
    >>> b
    [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
    >>> a = b
    >>> a
    [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

    再看看原值修改版的!

    a = [1,3,4,6,7,7,8,9,11]
    
    for index,i in enumerate(a):
        a[index] +=1
    print(a)

    再看看文艺青年版的!

    >>> a
    [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
    >>> a = map(lambda x:x+1, a)
    >>> a
    <map object at 0x101d2c630>
    >>> for i in a:print(i)
    ... 
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11

    再看看装逼青年

    >>> a = [i+1 for i in range(10)]
    >>> a
    [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

    这就叫做列表生成

    列表生成的主要作用使代码更简洁
    说完了列表生成式,那现在就开始说说生成器


    生成器

    通过列表生成式,我们可以直接创建一个列表。但是,受到内存限制,列表容量肯定是有限的。而且,创建一个包含100万个元素的列表,不仅占用很大的存储空间,如果我们仅仅需要访问前面几个元素,那后面绝大多数元素占用的空间都白白浪费了。(说白了就是浪费内存

    所以,如果列表元素可以按照某种算法推算出来,那我们是否可以在循环的过程中不断推算出后续的元素呢?这样就不必创建完整的list,从而节省大量的空间。在Python中,这种一边循环一边计算的机制,称为生成器:generator。

    生成器的机制

    a、生成器只有在调用的时候才会生成相应的数据.

    先看一段代码:

    >>> Good_man = [i*2 for i in range(100)] 
    >>> Good_man
    [0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72
    , 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 128, 130, 132, 134
    , 136, 138, 140, 142, 144, 146, 148, 150, 152, 154, 156, 158, 160, 162, 164, 166, 168, 170, 172, 174, 176, 178, 180, 182, 184, 186, 188, 190,
    192, 194, 196, 198]

    在路上你遇到了一个好人,他说:我能把你手里的100块钱变成200块,只要你给我,我就给你变!于是你就给他100块,很快的时间,他就把变的200块钱给你了,也没有贪图你一分钱!

    再看一段代码:

    >>> Bad_man = (i*2 for i in range(100))
    >>> Bad_man
    <generator object <genexpr> at 0x000000000066BE08> # 生成器
    >>>

    遇到好人之后,他将100块变成了200块,于是你的心理美滋滋,想着如果再能碰到这样的人就好,当你走着走着,突然看到一个很道貌盎然的男人,这个男人在路边看到了一个好人给他变钱,于是这个男人想把你的钱骗走,于是他就跟你说,他也能把100变为200,于是你就把钱给他了,但是他没有变出来,不是他不会变,而是他不想变,你看到他没给你钱于是你想朝他要 ,你先朝他要2块钱,他也就只给你两块钱,你想要10块,他只给你10块,多一分钱都不会给你,他就是这么吝啬!他不会一起把钱全部给你,只会两块两块的给你,直到把200块钱都给你,看下面代码!

    >>> Bad_man = (i*2 for i in range(100))
    >>> for i in Bad_man:
    ...     print(i)
    ...
    0
    2
    4
    ·
    ·
    ·
    ·
    ·
    194
    196
    198

    b、只记录当前位置,只有一个__next__()方法.(在python2.7中是next( ))

    Bad_man = (I*2 for i in range(1000000)
    for i in Bad_man:
        print(i)
    
    #输出
    0
    2
    4
    6
    8
    ·
    ·
    ·
    ·
    147946  # 突然在这里发生了错误
    
    Traceback (most recent call last):
      File "<stdin>", line 2, in <module>
    KeyboardInterrupt
    >>> ^X
      File "<stdin>", line 1
        
        ^
    SyntaxError: invalid syntax

    于是你想查找出现错误后的下一个数,通过

    >>> Bad_man.__next__()
    147948

    找到了错误的一下个数,但是你想能不能找到出现错误的数的前几个代码呢?于是你就查找各种资料,结果发现不能,于是经过查找,发现,只能一个个的查找后面的数值,而且只能用一种__next__()方法,想查找前面的数值是不可能的了!

    函数来实现生成器

    generator非常强大。如果推算的算法比较复杂,用类似列表生成式的for循环无法实现的时候,还可以用函数来实现。

    比如,著名的斐波拉契数列(Fibonacci),除第一个和第二个数外,任意一个数都可由前两个数相加得到:

    1, 1, 2, 3, 5, 8, 13, 21, 34, ...

    斐波拉契数列用列表生成式写不出来,但是,用函数把它打印出来却很容易:

    def fib(max):
        n, a, b = 0, 0, 1
        while n < max:
            print(b)
            a, b = b, a + b
            n = n + 1
        return 'done'
    fib(10)

    输出结果:

    1
    1
    2
    3
    5
    8
    13
    21
    34
    55

    仔细观察,可以看出,fib函数实际上是定义了斐波拉契数列的推算规则,可以从第一个元素开始,推算出后续任意的元素,这种逻辑其实非常类似generator。

    也就是说,上面的函数和generator仅一步之遥。要把fib函数变成generator,只需要把print(b)改为yield b就可以了:

    def fib(max):
        n, a, b = 0, 0, 1
        while n < max:
            yield b
            a, b = b, a + b
            n = n + 1
        return 'done'  # return的作用是 程序异常时打印出消息
    print(fib(10))

    这就是定义generator的另一种方法。如果一个函数定义中包含yield关键字,那么这个函数就不再是一个普通函数,而是一个generator:

    输出结果:

    <generator object fib at 0x00000000006DBD00>

    怎么样?很眼熟吧!

    这里,最难理解的就是generator和函数的执行流程不一样。函数是顺序执行,遇到return语句或者最后一行函数语句就返回。而变成generator的函数,在每次调用next()的时候执行,遇到yield语句返回,再次执行时从上次返回的yield语句处继续执行。

    f = fib(10)
    print(f)
    print(f.__next__())
    print(f.__next__())
    print(f.__next__())
    print(f.__next__())
    print("下次玩的舒服点哦!")
    print(f.__next__())
    print(f.__next__())
    
    # 输出
    <generator object fib at 0x0000000000AD5D00>
    1
    1
    2
    3
    下次玩的舒服点哦!
    5
    8
    13

    在上面fib的例子,我们在循环过程中不断调用yield,就会不断中断。当然要给循环设置一个条件来退出循环,不然就会产生一个无限数列出来。

    同样的,把函数改成generator后,我们基本上从来不会用next()来获取下一个返回值,而是直接使用for循环来迭代:

    f = fib(10)
    print(f)
    for n in f:
        print(n)
    # 打印
    <generator object fib at 0x0000000000665D00>
    1
    1
    2
    3
    5
    8
    13
    21
    34
    55

    但是用for循环调用generator时,发现拿不到generator的return语句的返回值。如果想要拿到返回值,必须捕获StopIteration错误,返回值包含在StopIteration的value中:

    g = fib(10)
    while True:
        try:
            x = next(g)
            print('g:', x)
        except StopIteration as e:
            print('Generator return value:', e.value)
            break
    
    # 输出
    g: 1
    g: 1
    g: 2
    g: 3
    g: 5
    g: 8
    g: 13
    g: 21
    g: 34
    g: 55
    Generator return value: done
  • 相关阅读:
    【转】详解 ASP.NET异步
    [转]C# Unity使用
    [转载]C# 温故而知新:Stream篇
    [转]SQL Server 2008带字段注释导入Power Designer 9.5
    SOAOffice控件
    【转】javascript 杂谈之哪种写法你更喜欢?
    【转】提搞网站访问速度的可做哪些优化
    用vs.NET创建Windows服务
    利用IIS的404错误将文件重写成目录的简单方法
    【转】寻找成为开发高手的密匙
  • 原文地址:https://www.cnblogs.com/zhuifeng-mayi/p/9247115.html
Copyright © 2011-2022 走看看