zoukankan      html  css  js  c++  java
  • LeetCode

    Clone Graph

    2014.2.25 22:15

    Clone an undirected graph. Each node in the graph contains a label and a list of its neighbors.

    OJ's undirected graph serialization:

    Nodes are labeled uniquely.

    We use # as a separator for each node, and , as a separator for node label and each neighbor of the node.

    As an example, consider the serialized graph {0,1,2#1,2#2,2}.

    The graph has a total of three nodes, and therefore contains three parts as separated by #.

    1. First node is labeled as 0. Connect node 0 to both nodes 1 and 2.
    2. Second node is labeled as 1. Connect node 1 to node 2.
    3. Third node is labeled as 2. Connect node 2 to node 2 (itself), thus forming a self-cycle.

    Visually, the graph looks like the following:

           1
          / 
         /   
        0 --- 2
             / 
             \_/

    Solution:

      The target of this problem is to make a deep copy of a graph, represented by nodes and pointers. Note that yo're only given one of the nodes as entry to the graph. It would be natural to use BFS to exploit the graph. To distinguish the nodes, we'll need hashing with <unordered_map> or <map>.

      Two tips for this problem:

        1. self-loop is possible.

        2. multigraph is possible.

      With only one entry, you can restore only one connected component, so you may suppose the graph has exactly one connected component.

      Time complexity is proportional to number of edges, while space complexity to number of vertices.

    Accepted code:

     1 // 5CE, 2WA, 1AC, serialize first, deserialize later.
     2 #include <queue>
     3 #include <vector>
     4 #include <unordered_map>
     5 using namespace std;
     6 /**
     7  * Definition for undirected graph.
     8  * struct UndirectedGraphNode {
     9  *     int label;
    10  *     vector<UndirectedGraphNode *> neighbors;
    11  *     UndirectedGraphNode(int x) : label(x) {};
    12  * };
    13  */
    14 class Solution {
    15 public:
    16     UndirectedGraphNode *cloneGraph(UndirectedGraphNode *node) {
    17         if (node == nullptr) {
    18             return nullptr;
    19         }
    20         
    21         UndirectedGraphNode *cur, *nei;
    22         int i, j;
    23         int nc;
    24         int ix, iy;
    25         int nsize;
    26         
    27         nc = 0;
    28         qq.push(node);
    29         while (!qq.empty()) {
    30             cur = qq.front();
    31             qq.pop();
    32             if (um.find(cur) == um.end()) {
    33                 um[cur] = nc++;
    34                 graph.push_back(vector<int>());
    35                 labels.push_back(cur->label);
    36                 nodes_checked.push_back(false);
    37             }
    38             ix = um[cur];
    39             if (nodes_checked[ix]) {
    40                 continue;
    41             }
    42             nsize = (int)cur->neighbors.size();
    43             for (i = 0; i < nsize; ++i) {
    44                 nei = cur->neighbors[i];
    45                 if (um.find(nei) == um.end()) {
    46                     um[nei] = nc++;
    47                     labels.push_back(nei->label);
    48                     graph.push_back(vector<int>());
    49                     nodes_checked.push_back(false);
    50                 }
    51                 iy = um[nei];
    52                 if (!nodes_checked[iy]) {
    53                     qq.push(nei);
    54                 }
    55                 graph[ix].push_back(iy);
    56             }
    57             nodes_checked[ix] = true;
    58         }
    59         
    60         new_nodes.clear();
    61         for (i = 0; i < nc; ++i) {
    62             new_nodes.push_back(new UndirectedGraphNode(labels[i]));
    63         }
    64         for (i = 0; i < nc; ++i) {
    65             nsize = (int)graph[i].size();
    66             for (j = 0; j < nsize; ++j) {
    67                 new_nodes[i]->neighbors.push_back(new_nodes[graph[i][j]]);
    68             }
    69         }
    70         cur = new_nodes[0];
    71         while (!qq.empty()) {
    72             qq.pop();
    73         }
    74         um.clear();
    75         new_nodes.clear();
    76         for (i = 0; i < (int)graph.size(); ++i) {
    77             graph[i].clear();
    78         }
    79         graph.clear();
    80         labels.clear();
    81         nodes_checked.clear();
    82         
    83         return cur;
    84     }
    85 private:
    86     queue<UndirectedGraphNode *> qq;
    87     unordered_map<UndirectedGraphNode *, int> um;
    88     vector<int> labels;
    89     vector<bool> nodes_checked;
    90     vector<UndirectedGraphNode *> new_nodes;
    91     vector<vector<int> > graph;
    92 };
  • 相关阅读:
    Hermite插值是牛顿插值的极限情形
    An introduction to numerical analysis theorem 6.3 :Hermite Interpolation Theorem
    matrix theory_basic results and techniques_exercise_1.2.10
    Hermite插值是牛顿插值的极限情形
    用带余除法可以解决一切部分分式的题目
    matrix theory_basic results and techniques_exercise_1.2.10
    详解物联网Modbus通讯协议
    手把手带你做LiteOS的树莓派移植
    在Vue中使用JSX,很easy的
    解读鸿蒙轻内核的监控器:异常钩子函数
  • 原文地址:https://www.cnblogs.com/zhuli19901106/p/3568063.html
Copyright © 2011-2022 走看看