zoukankan      html  css  js  c++  java
  • LeetCode

    Max Points on a Line

    2014.2.26 18:13

    Given n points on a 2D plane, find the maximum number of points that lie on the same straight line.

    Solution1:

      A simple solution to this problem is O(n^3). Scan every pair of points and see if others are on the line with them. Simple but not efficient.

      The second solution will be more efficient, but requires hashing. For each point p, if there're k other points that can form lines with the same slope with this point, they're all on the same line. When recording the slopes, you need hashing to assist you.

      The hashing could choose the slope rate y/x as the hash key, but you know it would involve float point calculation, which is liable to accuracy problem.

      I chose to record the slop with a pair (x, y), where y/x means the slope rate. (0, 1) means vertical line to the x-axis, while 1/0 is not a valid slope rate. This way of representation is more universal, but requires a little bit more coding.

      I had intended to use <unordered_map> as the hashing tool, but the code wouldn't compile and run, as I've never used any user-defined type as hash key before. So I switched for <map> to solve the problem. The code is relatively simple, only a few things to remind you here:

        1. There're duplicate points.

        2. There're vertical lines.

        3. All coordinates are integers and you don't have to worry about integer overflow.

      Time complexity is O(n^2 * log(n)), space complexity is O(n).

    Accepted code:

      1 // 8CE, 1AC, solution with <map>, I'll try <unordered_map> later.
      2 #include <map>
      3 #include <vector>
      4 using namespace std;
      5 
      6 /*
      7 struct Point {
      8     int x;
      9     int y;
     10     Point() : x(0), y(0) {}
     11     Point(int a, int b) : x(a), y(b) {}
     12 };
     13 */
     14 
     15 struct st {
     16     int x;
     17     int y;
     18     st(int _x = 0, int _y = 0): x(_x), y(_y) {};
     19 
     20     bool operator == (const st &other) const {
     21         return x == other.x && y == other.y;
     22     }
     23 
     24     bool operator != (const st &other) const {
     25         return x != other.x || y != other.y;
     26     }
     27 
     28     bool operator < (const st &other) const {
     29         if (x == other.x) {
     30             return y < other.y;
     31         } else {
     32             return x < other.x;
     33         }
     34     }
     35 };
     36 
     37 class Solution {
     38 public:
     39     int maxPoints(vector<Point> &points) {
     40         int n = (int)points.size();
     41         
     42         if (n <= 2) {
     43             return n;
     44         }
     45         
     46         map<st, int> um;
     47         st tmp;
     48         // special tangent value for duplicate points
     49         st dup(0, 0);
     50         
     51         int i, j;
     52         map<st, int>::const_iterator umit;
     53         int dup_count;
     54         int max_count;
     55         int result = 0;
     56         for (i = 0; i < n; ++i) {
     57             for (j = i + 1; j < n; ++j) {
     58                 tmp.x = points[j].x - points[i].x;
     59                 tmp.y = points[j].y - points[i].y;
     60                 // make sure one tangent value has one representation only.
     61                 normalize(tmp);
     62                 if (um.find(tmp) != um.end()) {
     63                     ++um[tmp];
     64                 } else {
     65                     um[tmp] = 1;
     66                 }
     67             }
     68             max_count = dup_count = 0;
     69             for (umit = um.begin(); umit != um.end(); ++umit) {
     70                 if (umit->first != dup) {
     71                     max_count = (umit->second > max_count ? umit->second : max_count);
     72                 } else {
     73                     dup_count = umit->second;
     74                 }
     75             }
     76             max_count = max_count + dup_count + 1;
     77             result = (max_count > result ? max_count : result);
     78             um.clear();
     79         }
     80         
     81         return result;
     82     }
     83 private:
     84     void normalize(st &tmp) {
     85         if (tmp.x == 0 && tmp.y == 0) {
     86             // (0, 0)
     87             return;
     88         }
     89         if (tmp.x == 0) {
     90             // (0, 1)
     91             tmp.y = 1;
     92             return;
     93         }
     94         if (tmp.y == 0) {
     95             // (1, 0)
     96             tmp.x = 1;
     97             return;
     98         }
     99         if (tmp.x < 0) {
    100             // (-2, 3) and (2, -3) => (2, -3)
    101             tmp.x = -tmp.x;
    102             tmp.y = -tmp.y;
    103         }
    104         
    105         int gcd_value;
    106         
    107         gcd_value = (tmp.y > 0 ? gcd(tmp.x, tmp.y) : gcd(tmp.x, -tmp.y));
    108         // (4, -6) and (-30, 45) => (2, -3)
    109         // using a double precision risks in accuracy
    110         // so I did it with a pair
    111         tmp.x /= gcd_value;
    112         tmp.y /= gcd_value;
    113     }
    114     
    115     int gcd(int x, int y) {
    116         // used for reduction of fraction
    117         return y ? gcd(y, x % y) : x;
    118     }
    119 };

    Solution2:

      This is the version using <unordered_map>.

      Time complexity is O(n^2), space complexity is O(n).

      If you're not familiar with the usage of functor, perhaps you might see the code below for reference.

    Accepted code:

      1 // 1CE, 1AC, unordered_map with user-defined key.
      2 #include <unordered_map>
      3 #include <vector>
      4 using namespace std;
      5 /*
      6 struct Point {
      7     int x;
      8     int y;
      9     Point() : x(0), y(0) {}
     10     Point(int a, int b) : x(a), y(b) {}
     11 };
     12 */
     13 struct st {
     14     int x;
     15     int y;
     16     st(int _x = 0, int _y = 0): x(_x), y(_y) {};
     17 
     18     bool operator == (const st &other) const {
     19         return x == other.x && y == other.y;
     20     };
     21 
     22     bool operator != (const st &other) const {
     23         return x != other.x || y != other.y;
     24     };
     25 };
     26 
     27 struct hash_functor {
     28     size_t operator () (const st &a) const {
     29         return (a.x * 1009 + a.y);
     30     }
     31 };
     32 
     33 struct compare_functor {
     34     bool operator () (const st &a, const st &b) const {
     35         return (a.x == b.x && a.y == b.y);
     36     }
     37 };
     38 
     39 typedef unordered_map<st, int, hash_functor, compare_functor> st_map;
     40 
     41 class Solution {
     42 public:
     43     int maxPoints(vector<Point> &points) {
     44         int n = (int)points.size();
     45         
     46         if (n <= 2) {
     47             return n;
     48         }
     49         
     50         st_map um;
     51         st tmp;
     52         // special tangent value for duplicate points
     53         st dup(0, 0);
     54         
     55         int i, j;
     56         st_map::const_iterator umit;
     57         int dup_count;
     58         int max_count;
     59         int result = 0;
     60         for (i = 0; i < n; ++i) {
     61             for (j = i + 1; j < n; ++j) {
     62                 tmp.x = points[j].x - points[i].x;
     63                 tmp.y = points[j].y - points[i].y;
     64                 // make sure one tangent value has one representation only.
     65                 normalize(tmp);
     66                 if (um.find(tmp) != um.end()) {
     67                     ++um[tmp];
     68                 } else {
     69                     um[tmp] = 1;
     70                 }
     71             }
     72             max_count = dup_count = 0;
     73             for (umit = um.begin(); umit != um.end(); ++umit) {
     74                 if (umit->first != dup) {
     75                     max_count = (umit->second > max_count ? umit->second : max_count);
     76                 } else {
     77                     dup_count = umit->second;
     78                 }
     79             }
     80             max_count = max_count + dup_count + 1;
     81             result = (max_count > result ? max_count : result);
     82             um.clear();
     83         }
     84         
     85         return result;
     86     }
     87 private:
     88     void normalize(st &tmp) {
     89         if (tmp.x == 0 && tmp.y == 0) {
     90             // (0, 0)
     91             return;
     92         }
     93         if (tmp.x == 0) {
     94             // (0, 1)
     95             tmp.y = 1;
     96             return;
     97         }
     98         if (tmp.y == 0) {
     99             // (1, 0)
    100             tmp.x = 1;
    101             return;
    102         }
    103         if (tmp.x < 0) {
    104             // (-2, 3) and (2, -3) => (2, -3)
    105             tmp.x = -tmp.x;
    106             tmp.y = -tmp.y;
    107         }
    108         
    109         int gcd_value;
    110         
    111         gcd_value = (tmp.y > 0 ? gcd(tmp.x, tmp.y) : gcd(tmp.x, -tmp.y));
    112         // (4, -6) and (-30, 45) => (2, -3)
    113         // using a double precision risks in accuracy
    114         // so I did it with a pair
    115         tmp.x /= gcd_value;
    116         tmp.y /= gcd_value;
    117     }
    118     
    119     int gcd(int x, int y) {
    120         // used for reduction of fraction
    121         return y ? gcd(y, x % y) : x;
    122     }
    123 };
  • 相关阅读:
    Java相对路径读取文件
    【转载】 OpenCV ——双线性插值(Bilinear interpolation)
    【转载】 从ACM会议看中国大陆计算机科学与国外的差距
    【转载】 一个老博士的经验顺口溜! 研究生生活的精华总结!
    【转载】 研究生生活总结(2):从技术到研究再到技术的过程
    【转载】 研究生生活总结(1):当助教的那些人和事
    【转载】 如何看待 2019 年 CS PhD 现扎堆申请且大部分为 AI 方向?未来几年 AI 泡沫会破裂吗?
    【转载】 深度强化学习处理cartpole为什么reward很难超过200?
    【转载】 强化学习中 采用 【首次访问的蒙特卡洛预测法】 的算法描述
    【转载】 混合智能
  • 原文地址:https://www.cnblogs.com/zhuli19901106/p/3569902.html
Copyright © 2011-2022 走看看