zoukankan      html  css  js  c++  java
  • LeetCode

    Word Ladder II

    2014.2.13 01:23

    Given two words (start and end), and a dictionary, find all shortest transformation sequence(s) from start to end, such that:

    1. Only one letter can be changed at a time
    2. Each intermediate word must exist in the dictionary

    For example,

    Given:
    start = "hit"
    end = "cog"
    dict = ["hot","dot","dog","lot","log"]

    Return

      [
        ["hit","hot","dot","dog","cog"],
        ["hit","hot","lot","log","cog"]
      ]

    Note:

    • All words have the same length.
    • All words contain only lowercase alphabetic characters.

    Solution:

      The solution for this problem is similar to Word Ladder, but you have to record the full paths.

      I tried my own methods, but all got timed-out. At last I referred to others' code and saw the key difference from my code: when a word is visited, you have to remove it from the dictionary, because you never visit it again. This strategy makes the code run much faster.

      Besides, the idea of solving this problem is still with BFS, but not in the form of queue-in or queue-out. You can do it with O(n) space and without a <queue>.

      Total time complexity is O(n^2). Space complexity is O(n).

    Accepted code:

     1 // 9CE, 1TLE, 1WA, 1AC, O(n^2) will get you TLE, no matter time or space.
     2 #include <string>
     3 #include <unordered_map>
     4 #include <unordered_set>
     5 #include <vector>
     6 using namespace std;
     7 
     8 class Solution {
     9 public:
    10     vector<vector<string> > findLadders(string start, string end, unordered_set<string> &dict) {
    11         unordered_map<string, vector<string> > back_trace;
    12         vector<unordered_set<string> > level(2);
    13         
    14         dict.insert(start);
    15         dict.insert(end);
    16         
    17         int flag, nflag;
    18         flag = 0;
    19         nflag = !flag;
    20         level[flag].insert(start);
    21         
    22         unordered_set<string>::iterator usit;
    23         char ch, old_ch;
    24         string word;
    25         while (true) {
    26             flag = !flag;
    27             nflag = !nflag;
    28             level[flag].clear();
    29             for (usit = level[nflag].begin(); usit != level[nflag].end(); ++usit) {
    30                 dict.erase(*usit);
    31             }
    32             for (usit = level[nflag].begin(); usit != level[nflag].end(); ++usit) {
    33                 word = *usit;
    34                 for (size_t i = 0; i < word.size(); ++i) {
    35                     old_ch = word[i];
    36                     for (ch = 'a'; ch <= 'z'; ++ch) {
    37                         if (ch == old_ch) {
    38                             continue;
    39                         }
    40                         word[i] = ch;
    41                         if (dict.find(word) != dict.end()) {
    42                             back_trace[word].push_back(*usit);
    43                             level[flag].insert(word);
    44                         }
    45                     }
    46                     word[i] = old_ch;
    47                 }
    48             }
    49             if (level[flag].empty() || level[flag].count(end) > 0) {
    50                 // found or not found
    51                 break;
    52             }
    53         }
    54         
    55         single_result.clear();
    56         for (size_t i = 0; i < result.size(); ++i) {
    57             result[i].clear();
    58         }
    59         result.clear();
    60         
    61         if (!back_trace.empty()) {
    62             recorverPath(back_trace, end);
    63         }
    64         
    65         return result;
    66     }
    67 private:
    68     vector<vector<string> > result;
    69     vector<string> single_result;
    70     
    71     void recorverPath(unordered_map<string, vector<string> > &back_trace, string cur) {
    72         if (back_trace.count(cur) == 0) {
    73             // this word has no back trace, it is unreachable.
    74             vector<string> single_path(single_result);
    75             
    76             single_path.push_back(cur);
    77             reverse(single_path.begin(), single_path.end());
    78             result.push_back(single_path);
    79             return;
    80         }
    81         
    82         const vector<string> &v = back_trace[cur];
    83         vector<string>::const_iterator usit;
    84         
    85         single_result.push_back(cur);
    86         for (usit = v.begin(); usit != v.end(); ++usit) {
    87             recorverPath(back_trace, *usit);
    88         }
    89         single_result.pop_back();
    90     }
    91 };
  • 相关阅读:
    解析#pragma指令
    查看内核版本和发行版本

    unix 环境高级编成 apue.h ,apueerror.h的代码
    类string的构造函数、拷贝构造函数和析构函数 (转)
    归并排序
    C++ 中调用其他应用程序的方法
    [MySQL] MySQL的Grant命令
    static的作用
    白话经典算法系列之七 堆与堆排序 (转)
  • 原文地址:https://www.cnblogs.com/zhuli19901106/p/3570579.html
Copyright © 2011-2022 走看看