Time Limit: 1000MS | Memory Limit: 65536K | |
Total Submissions: 17694 | Accepted: 12315 |
Description
In the Fibonacci integer sequence, F0 = 0, F1 = 1, and Fn = Fn − 1 + Fn − 2 for n ≥ 2. For example, the first ten terms of the Fibonacci sequence are:
0, 1, 1, 2, 3, 5, 8, 13, 21, 34, …
An alternative formula for the Fibonacci sequence is
.
Given an integer n, your goal is to compute the last 4 digits of Fn.
Input
The input test file will contain multiple test cases. Each test case consists of a single line containing n (where 0 ≤ n ≤ 1,000,000,000). The end-of-file is denoted by a single line containing the number −1.
Output
For each test case, print the last four digits of Fn. If the last four digits of Fn are all zeros, print ‘0’; otherwise, omit any leading zeros (i.e., print Fn mod 10000).
Sample Input
0 9 999999999 1000000000 -1
Sample Output
0 34 626 6875
Hint
As a reminder, matrix multiplication is associative, and the product of two 2 × 2 matrices is given by
.
Also, note that raising any 2 × 2 matrix to the 0th power gives the identity matrix:
.
Source
#include <iostream> #include <cstring> using namespace std; const int MAX = 2; const int mod = 1e4; struct mat{ int f[MAX][MAX]; mat operator * (const mat x){ //重载矩阵的乘法 mat rt; for(int i = 0; i < MAX; i++){ for(int j = 0; j < MAX; j++){ int ans = 0; for(int m = 0; m < MAX; m++){ ans += (this->f[i][m] * x.f[m][j]) % mod; ans %= mod; } rt.f[i][j] = ans; } } return rt; } }; mat quike(mat base, int n){ //与普通快速幂相似,只是用于存结果的其实值不同,这里用的是rt单位矩阵,类似乘法中设的1 mat rt; memset(rt.f, 0, sizeof(rt.f)); for(int i = 0; i < MAX; i++) rt.f[i][i] = 1; while(n){ if(n & 1) rt = rt * base; base = base * base; n >>= 1; } return rt; } int main(){ int n; mat base; for(int i = 0; i < MAX; i++){ for(int j = 0; j < MAX; j++) base.f[i][j] = 1; } base.f[1][1] = 0; while(cin >> n && n != -1){ mat ans = quike(base, n); cout << ans.f[0][1] << endl; } return 0; }