zoukankan      html  css  js  c++  java
  • A1024. Palindromic Number

    A number that will be the same when it is written forwards or backwards is known as a Palindromic Number. For example, 1234321 is a palindromic number. All single digit numbers are palindromic numbers.

    Non-palindromic numbers can be paired with palindromic ones via a series of operations. First, the non-palindromic number is reversed and the result is added to the original number. If the result is not a palindromic number, this is repeated until it gives a palindromic number. For example, if we start from 67, we can obtain a palindromic number in 2 steps: 67 + 76 = 143, and 143 + 341 = 484.

    Given any positive integer N, you are supposed to find its paired palindromic number and the number of steps taken to find it.

    Input Specification:

    Each input file contains one test case. Each case consists of two positive numbers N and K, where N (<= 1010) is the initial numer and K (<= 100) is the maximum number of steps. The numbers are separated by a space.

    Output Specification:

    For each test case, output two numbers, one in each line. The first number is the paired palindromic number of N, and the second number is the number of steps taken to find the palindromic number. If the palindromic number is not found after K steps, just output the number obtained at the Kth step and K instead.

    Sample Input 1:

    67 3
    

    Sample Output 1:

    484
    2
    

    Sample Input 2:

    69 3
    

    Sample Output 2:

    1353
    3

     1 #include<cstdio>
     2 #include<iostream>
     3 #include<algorithm>
     4 #include<math.h>
     5 #include<string.h>
     6 using namespace std;
     7 char str[21];
     8 typedef struct info{
     9     int num[100];
    10     int len;
    11     info(){
    12         for(int i = 0; i < 100; i++)
    13             num[i] = 0;
    14         len = 0;
    15     }
    16 }bign;
    17 void reverse(bign &a, bign &b){
    18     b.len = 0;
    19     for(int i = a.len - 1; i >= 0; i--){
    20         b.num[b.len++] = a.num[i];
    21     }
    22 }
    23 bign add(bign a, bign b){
    24     bign c;
    25     int carry = 0;
    26     for(int i = 0; i < a.len || i < b.len; i++){
    27         int temp = carry + a.num[i] + b.num[i];
    28         c.num[c.len++] = temp % 10;
    29         carry = temp / 10;
    30     }
    31     if(carry != 0){
    32         c.num[c.len++] = carry;
    33     }
    34     return c;
    35 }
    36 int isPal(bign a){
    37     for(int i = 0, j = a.len - 1; i <= j; i++, j--){
    38         if(a.num[i] != a.num[j])
    39             return 0;
    40     }
    41     return 1;
    42 }
    43 bign a, b, c;
    44 int main(){
    45     int K;
    46     scanf("%s %d", str, &K);
    47     for(int i = strlen(str) - 1; i >= 0; i--){
    48         a.num[a.len++] = str[i] - '0';
    49     }
    50     int find = 0;
    51     if(isPal(a)){
    52         find = 1;
    53         for(int j = a.len - 1; j >= 0; j--){
    54             printf("%d", a.num[j]);
    55         }
    56         printf("
    %d", 0);
    57     }
    58     for(int i = 0; find == 0 && i < K; i++){
    59         reverse(a, b);
    60         a = add(a, b);
    61         if(isPal(a)){
    62             find = 1;
    63             for(int j = a.len - 1; j >= 0; j--){
    64                 printf("%d", a.num[j]);
    65             }
    66             printf("
    %d", i + 1);
    67             break;
    68         }
    69     }
    70     if(find == 0){
    71         for(int j = a.len - 1; j >= 0; j--){
    72             printf("%d", a.num[j]);
    73         }
    74         printf("
    %d", K);
    75     }
    76     cin >> K;
    77     return 0;
    78 }
    View Code

    总结:

    1、仍然是大整数加法,注意有可能给出的数不用做处理就是对称数,这是应输出这个数,次数位0。

  • 相关阅读:
    CEF解决加载慢问题
    CEF之CefSettings设置locale
    Win32程序支持命令行参数的做法(转载)
    VC++实现程序重启的方法(转载)
    CEF之CefSettings设置日志等级
    libcurl开源库在Win32程序中使用下载文件显示进度条实例
    libcurl开源库在Win7 + VS2012环境下编译、配置详解 以及下载文件并显示下载进度 demo(转载)
    使用ShellExecute打开目标文件所在文件夹并选中目标文件
    linux下gimp的使用
    linux下的chm阅读器?
  • 原文地址:https://www.cnblogs.com/zhuqiwei-blog/p/8522627.html
Copyright © 2011-2022 走看看