zoukankan      html  css  js  c++  java
  • A1024. Palindromic Number

    A number that will be the same when it is written forwards or backwards is known as a Palindromic Number. For example, 1234321 is a palindromic number. All single digit numbers are palindromic numbers.

    Non-palindromic numbers can be paired with palindromic ones via a series of operations. First, the non-palindromic number is reversed and the result is added to the original number. If the result is not a palindromic number, this is repeated until it gives a palindromic number. For example, if we start from 67, we can obtain a palindromic number in 2 steps: 67 + 76 = 143, and 143 + 341 = 484.

    Given any positive integer N, you are supposed to find its paired palindromic number and the number of steps taken to find it.

    Input Specification:

    Each input file contains one test case. Each case consists of two positive numbers N and K, where N (<= 1010) is the initial numer and K (<= 100) is the maximum number of steps. The numbers are separated by a space.

    Output Specification:

    For each test case, output two numbers, one in each line. The first number is the paired palindromic number of N, and the second number is the number of steps taken to find the palindromic number. If the palindromic number is not found after K steps, just output the number obtained at the Kth step and K instead.

    Sample Input 1:

    67 3
    

    Sample Output 1:

    484
    2
    

    Sample Input 2:

    69 3
    

    Sample Output 2:

    1353
    3

     1 #include<cstdio>
     2 #include<iostream>
     3 #include<algorithm>
     4 #include<math.h>
     5 #include<string.h>
     6 using namespace std;
     7 char str[21];
     8 typedef struct info{
     9     int num[100];
    10     int len;
    11     info(){
    12         for(int i = 0; i < 100; i++)
    13             num[i] = 0;
    14         len = 0;
    15     }
    16 }bign;
    17 void reverse(bign &a, bign &b){
    18     b.len = 0;
    19     for(int i = a.len - 1; i >= 0; i--){
    20         b.num[b.len++] = a.num[i];
    21     }
    22 }
    23 bign add(bign a, bign b){
    24     bign c;
    25     int carry = 0;
    26     for(int i = 0; i < a.len || i < b.len; i++){
    27         int temp = carry + a.num[i] + b.num[i];
    28         c.num[c.len++] = temp % 10;
    29         carry = temp / 10;
    30     }
    31     if(carry != 0){
    32         c.num[c.len++] = carry;
    33     }
    34     return c;
    35 }
    36 int isPal(bign a){
    37     for(int i = 0, j = a.len - 1; i <= j; i++, j--){
    38         if(a.num[i] != a.num[j])
    39             return 0;
    40     }
    41     return 1;
    42 }
    43 bign a, b, c;
    44 int main(){
    45     int K;
    46     scanf("%s %d", str, &K);
    47     for(int i = strlen(str) - 1; i >= 0; i--){
    48         a.num[a.len++] = str[i] - '0';
    49     }
    50     int find = 0;
    51     if(isPal(a)){
    52         find = 1;
    53         for(int j = a.len - 1; j >= 0; j--){
    54             printf("%d", a.num[j]);
    55         }
    56         printf("
    %d", 0);
    57     }
    58     for(int i = 0; find == 0 && i < K; i++){
    59         reverse(a, b);
    60         a = add(a, b);
    61         if(isPal(a)){
    62             find = 1;
    63             for(int j = a.len - 1; j >= 0; j--){
    64                 printf("%d", a.num[j]);
    65             }
    66             printf("
    %d", i + 1);
    67             break;
    68         }
    69     }
    70     if(find == 0){
    71         for(int j = a.len - 1; j >= 0; j--){
    72             printf("%d", a.num[j]);
    73         }
    74         printf("
    %d", K);
    75     }
    76     cin >> K;
    77     return 0;
    78 }
    View Code

    总结:

    1、仍然是大整数加法,注意有可能给出的数不用做处理就是对称数,这是应输出这个数,次数位0。

  • 相关阅读:
    python学习笔记(二)
    python学习笔记(四)
    首个python程序,一个猜数字的小游戏 ^0^
    python生成随机数
    python生成随机数
    python学习笔记(四)
    我的书《编写高质量代码—Web前端开发修炼之道》面市了,请大家多多支持
    python学习笔记(三)
    EasyNVR纯H5摄像机直播解决方案前端解析之:RTSP安防监控实时直播的网页H5自动播放方案
    基于EasyNVR实现RTSP_Onvif监控摄像头Web无插件化直播监控
  • 原文地址:https://www.cnblogs.com/zhuqiwei-blog/p/8522627.html
Copyright © 2011-2022 走看看