zoukankan      html  css  js  c++  java
  • A1126. Eulerian Path

    In graph theory, an Eulerian path is a path in a graph which visits every edge exactly once. Similarly, an Eulerian circuit is an Eulerian path which starts and ends on the same vertex. They were first discussed by Leonhard Euler while solving the famous Seven Bridges of Konigsberg problem in 1736. It has been proven that connected graphs with all vertices of even degree have an Eulerian circuit, and such graphs are called Eulerian. If there are exactly two vertices of odd degree, all Eulerian paths start at one of them and end at the other. A graph that has an Eulerian path but not an Eulerian circuit is called semi-Eulerian. (Cited from https://en.wikipedia.org/wiki/Eulerian_path)

    Given an undirected graph, you are supposed to tell if it is Eulerian, semi-Eulerian, or non-Eulerian.

    Input Specification:

    Each input file contains one test case. Each case starts with a line containing 2 numbers N (<= 500), and M, which are the total number of vertices, and the number of edges, respectively. Then M lines follow, each describes an edge by giving the two ends of the edge (the vertices are numbered from 1 to N).

    Output Specification:

    For each test case, first print in a line the degrees of the vertices in ascending order of their indices. Then in the next line print your conclusion about the graph -- either "Eulerian", "Semi-Eulerian", or "Non-Eulerian". Note that all the numbers in the first line must be separated by exactly 1 space, and there must be no extra space at the beginning or the end of the line.

    Sample Input 1:

    7 12
    5 7
    1 2
    1 3
    2 3
    2 4
    3 4
    5 2
    7 6
    6 3
    4 5
    6 4
    5 6
    

    Sample Output 1:

    2 4 4 4 4 4 2
    Eulerian
    

    Sample Input 2:

    6 10
    1 2
    1 3
    2 3
    2 4
    3 4
    5 2
    6 3
    4 5
    6 4
    5 6
    

    Sample Output 2:

    2 4 4 4 3 3
    Semi-Eulerian
    

    Sample Input 3:

    5 8
    1 2
    2 5
    5 4
    4 1
    1 3
    3 2
    3 4
    5 3
    

    Sample Output 3:

    3 3 4 3 3
    Non-Eulerian

     1 #include<cstdio>
     2 #include<iostream>
     3 #include<algorithm>
     4 using namespace std;
     5 int G[501][501] = {0,0}, visit[501] = {0};
     6 int N, M;
     7 void DFS(int vt){
     8     visit[vt] = 1;
     9     for(int i = 1; i <= N; i++){
    10         if(G[vt][i] != 0 && visit[i] == 0)
    11             DFS(i);
    12     }
    13 }
    14 int main(){
    15     scanf("%d%d", &N, &M);
    16     for(int i = 0; i < M; i++){
    17         int v1, v2;
    18         scanf("%d%d", &v1, &v2);
    19         G[v1][v2] = G[v2][v1] = 1;
    20     }
    21     int odds = 1, even = 1, cnt = 0;
    22     for(int i = 1; i <= N; i++){
    23         int sum = 0;
    24         for(int j = 1; j <= N; j++){
    25             sum += G[i][j];
    26         }
    27         if(i == N)
    28             printf("%d
    ", sum);
    29         else printf("%d ", sum);
    30         if(sum % 2 == 0){
    31             odds = 0;
    32         }else{
    33             even = 0;
    34             cnt++;
    35         }
    36     }
    37     DFS(1);
    38     for(int i = 1; i <= N; i++)
    39         if(visit[i] == 0){
    40             printf("Non-Eulerian");
    41             return 0;
    42         }
    43     if(even == 1){
    44         printf("Eulerian");
    45     }else if(cnt == 2){
    46         printf("Semi-Eulerian");
    47     }else printf("Non-Eulerian");
    48     cin >> N;
    49     return 0;
    50 
    51 }
    View Code

    总结:

    1、容易被忽略的:Semi-Eulerian和 Eulerian都是建立在连通图的基础上。最开始忽略了连通图的条件,结果有一个测试点过不去。应该先判断是否连通,不连通为 Non-Eulerian。

  • 相关阅读:
    QTP 处理webtable中的数据
    Error 1406.Setup cannot write the value Microsoft
    QTP打开WinTree中的指定节点
    Excel数据操作
    VBS中实现函数多返回值
    QTP的回放模式
    VBS中运行应用程序的两种方式及WshShell对像浅析
    程序员奇葩面试的奇葩问题
    Android如何实现毛玻璃效果之Android高级模糊技术
    Android通过用代码画虚线椭圆边框背景来学习一下shape的用法
  • 原文地址:https://www.cnblogs.com/zhuqiwei-blog/p/8583781.html
Copyright © 2011-2022 走看看