zoukankan      html  css  js  c++  java
  • A1142. Maximal Clique

    A clique is a subset of vertices of an undirected graph such that every two distinct vertices in the clique are adjacent. A maximal cliqueis a clique that cannot be extended by including one more adjacent vertex. (Quoted from https://en.wikipedia.org/wiki/Clique_(graph_theory))

    Now it is your job to judge if a given subset of vertices can form a maximal clique.

    Input Specification:

    Each input file contains one test case. For each case, the first line gives two positive integers Nv (≤ 200), the number of vertices in the graph, and Ne, the number of undirected edges. Then Ne lines follow, each gives a pair of vertices of an edge. The vertices are numbered from 1 to Nv.

    After the graph, there is another positive integer M (≤ 100). Then M lines of query follow, each first gives a positive number K (≤ Nv), then followed by a sequence of K distinct vertices. All the numbers in a line are separated by a space.

    Output Specification:

    For each of the M queries, print in a line Yes if the given subset of vertices can form a maximal clique; or if it is a clique but not a maximal clique, print Not Maximal; or if it is not a clique at all, print Not a Clique.

    Sample Input:

    8 10
    5 6
    7 8
    6 4
    3 6
    4 5
    2 3
    8 2
    2 7
    5 3
    3 4
    6
    4 5 4 3 6
    3 2 8 7
    2 2 3
    1 1
    3 4 3 6
    3 3 2 1
    

    Sample Output:

    Yes
    Yes
    Yes
    Yes
    Not Maximal
    Not a Clique


    #include<iostream>
    #include<algorithm>
    #include<cstdio>
    using namespace std;
    int G[500][500] = {0};
    int Nv, Ne;
    int seq[500], hashTB[500];
    int main(){
        scanf("%d%d", &Nv, &Ne);
        for(int i = 0; i < Ne; i++){
            int v1, v2;
            scanf("%d%d", &v1, &v2);
            G[v1][v2] = G[v2][v1] = 1;
        }
        int M;
        scanf("%d", &M);
        for(int i = 0; i < M; i++){
            fill(hashTB, hashTB + 500, 0);
            int K;
            scanf("%d", &K);
            for(int j = 0; j < K; j++){
                scanf("%d", &seq[j]);
                hashTB[seq[j]] = 1;
            }
            int isClque = 1;
            for(int j = 0; j < K; j++){
                for(int m = j + 1; m < K; m++){
                    if(G[seq[j]][seq[m]] == 0){
                        isClque = 0;
                        break;
                    }
                    if(isClque == 0)
                        break;
                }
            }
            int isMax = 1;
            for(int n = 1; n <= Nv; n++){
                if(hashTB[n] == 0){
                    int tag = 1;
                    for(int p = 0; p < K; p++){
                        if(G[seq[p]][n] == 0){
                            tag = 0;
                            break;
                        }
                    }
                    if(tag == 1){
                        isMax = 0;
                        break;
                    }
                }
            }
            if(isMax == 1 && isClque == 1){
                printf("Yes
    ");
            }else if(isClque == 1){
                printf("Not Maximal
    ");
            }else{
                printf("Not a Clique
    ");
            }
        }
        cin >> M;
        return 0;
    }
    View Code

    总结:

    1、题意:给出一个点的集合,判断这些点是否是给出的无向图的极大团。根据题意,极大团是一个点的集合:这个集合中的任意两个点之间都存在一条边,且点的个数是极大的。

    2、由于给出的节点数N较少,直接暴力循环即可。对每一个待判断集合中的点,都验证它是否与集合中其它点相连接即可。极大性验证:依次检验非集合内的点,如果存在一个点v与集合内的点都连接,则不是极大团。

  • 相关阅读:
    Docker从12升级到17ce
    镜像清理和删除
    flask-session 在redis中存储session
    linux后台运行python程序 nohup
    flask 自动切换环境
    Linux SSH登录很慢的解决方法
    docker-compose docker启动工具,容器互联
    为什么企业需要IT资产管理
    sql 中取整,四舍五入取整,向下取整,向上取整。
    sqlalchemy 获取表结构。
  • 原文地址:https://www.cnblogs.com/zhuqiwei-blog/p/9566681.html
Copyright © 2011-2022 走看看