zoukankan      html  css  js  c++  java
  • A1143. Lowest Common Ancestor

    The lowest common ancestor (LCA) of two nodes U and V in a tree is the deepest node that has both U and V as descendants.

    A binary search tree (BST) is recursively defined as a binary tree which has the following properties:

    • The left subtree of a node contains only nodes with keys less than the node's key.
    • The right subtree of a node contains only nodes with keys greater than or equal to the node's key.
    • Both the left and right subtrees must also be binary search trees.

    Given any two nodes in a BST, you are supposed to find their LCA.

    Input Specification:

    Each input file contains one test case. For each case, the first line gives two positive integers: M (≤ 1,000), the number of pairs of nodes to be tested; and N (≤ 10,000), the number of keys in the BST, respectively. In the second line, N distinct integers are given as the preorder traversal sequence of the BST. Then M lines follow, each contains a pair of integer keys U and V. All the keys are in the range of int.

    Output Specification:

    For each given pair of U and V, print in a line LCA of U and V is A. if the LCA is found and A is the key. But if A is one of U and V, print X is an ancestor of Y. where X is A and Y is the other node. If U or V is not found in the BST, print in a line ERROR: U is not found. or ERROR: V is not found. or ERROR: U and V are not found..

    Sample Input:

    6 8
    6 3 1 2 5 4 8 7
    2 5
    8 7
    1 9
    12 -3
    0 8
    99 99
    

    Sample Output:

    LCA of 2 and 5 is 3.
    8 is an ancestor of 7.
    ERROR: 9 is not found.
    ERROR: 12 and -3 are not found.
    ERROR: 0 is not found.
    ERROR: 99 and 99 are not found.


    #include<iostream>
    #include<algorithm>
    #include<cstdio>
    #include<map>
    using namespace std;
    typedef struct NODE{
        struct NODE* lchild, *rchild;
        int data;
    }node;
    int M, N;
    int pre[10010], in[10010];
    map<int, int>mp;
    node* create(int preL, int preR, int inL, int inR){
        if(preL > preR)
            return NULL;
        node* root = new node;
        root->data = pre[preL];
        int mid;
        for(int i = inL; i <= inR; i++){
            if(in[i] == root->data){
                mid = i;
                break;
            }
        }
        int len = mid - inL;
        root->lchild = create(preL + 1, preL + len, inL, mid - 1);
        root->rchild = create(preL + len + 1, preR, mid + 1, inR);
        return root;
    }
    node* find(node* root, int u, int v){
        if(root == NULL || root->data == u || root->data == v)
            return root;
        node* ll = find(root->lchild, u, v);
        node* rr = find(root->rchild, u, v);
        if(ll != NULL && rr != NULL){
            return root;
        }
        if(ll != NULL){
            return ll;
        }
        if(rr != NULL){
            return rr;
        }
    }
    int main(){
        scanf("%d%d", &M, &N);
        for(int i = 0; i < N; i++){
            scanf("%d", &in[i]);
            pre[i] = in[i];
            mp[pre[i]] = 1;
        }
        sort(in, in + N);
        node* root = create(0, N - 1, 0, N - 1);
        for(int i = 0; i < M; i++){
            int u, v;
            scanf("%d%d", &u, &v);
            if(mp.count(u) == 0 && mp.count(v) == 0){
                printf("ERROR: %d and %d are not found.
    ", u, v);
            }else if(mp.count(u) == 0){
                printf("ERROR: %d is not found.
    ",u );
            }else if(mp.count(v) == 0){
                printf("ERROR: %d is not found.
    ",v);
            }else{
                node* ans = find(root, u, v);
                if(ans->data != u && ans->data != v){
                    printf("LCA of %d and %d is %d.
    ", u, v, ans->data);
                }else if(ans->data == u){
                    printf("%d is an ancestor of %d.
    ", u, v);
                }else{
                    printf("%d is an ancestor of %d.
    ", v, u);
                }
            }
        }
        cin >> N;
        return 0;
    }
    View Code

    总结:

    1、题意:给出一个BST的先序序列,再给出两个点u、v,要求在BST中找出uv的最低公共祖先。

    2、BST已知先序建树有两种方法,1)先序序列的顺序就是插入顺序,直接依次插入。2)对先序进行排序得到中序序列(BST的中序是从小到大的有序序列),由先序和中序进行递归建树。由于本题的N个数很大,使用insert方法会超时,尤其是在树高度为N时,复杂度为O(n^2)。所以最好采用先序+中序建树。

    3、找最低的公共祖先。这种类型的任务一般采用后序递归遍历的办法:先处理左子树,再处理右子树,等左右子树都完成后,综合左右子树返回的信息与root的信息进行某些处理,再返回本层递归的结果。具体到本题,uv只有两种情况:1)即uv分别在某w节点的左右子树,则w为所求。2)uv本身就有祖先后代关系,则若u为祖先,u即为所求。

        后序递归,若root为NULL或uv时,说明查找失败或成功,直接返回root。否则说明root为普通节点,先对root的左右子树分别查找。若左右子树都不空时,说明uv分别在root的左右两侧子树,则root即为所求。否则,说明uv在root的一侧子树,若在root的左侧,则将root左侧的查找结果返回。

  • 相关阅读:
    [原创]可动态显示圆形图像或圆形文字的AvatarImageView
    [原创]自定义view之:快速开发一款Material Design风格的dialog的开源项目MDDialog
    [原创]自定义BaseAcitivity的实现,统一activity的UI风格样式
    [原创]android自定义动画的一点感悟
    [原创]Java中的字符串比较,按照使用习惯进行比较
    [原创]android使用代码生成LayerDrawable的方法和注意事项
    [原创]android开源项目源码解析(一)----CircleImageView的源码解析
    [原创]自定义公历农历日期选择器
    自定义android RadioButton View,添加较为灵活的布局处理方式
    实现仿知乎的开场动画,图片zoomin的效果,实现原理,没加动效
  • 原文地址:https://www.cnblogs.com/zhuqiwei-blog/p/9567064.html
Copyright © 2011-2022 走看看