A.相遇时间段l = max(l1,l2),r = min(r1,r2),再判断k是否在里面。
#include <iostream> using namespace std; long long l1,l2,r1,r2,k; int main() { cin >> l1 >> r1 >> l2 >> r2 >> k; long long l = max(l1,l2),r = min(r1,r2); if(l > r) cout << 0 << endl; else { long long t = r-l+1; if(l <= k && k <= r) t--; cout << t << endl; } return 0; }
B.判断出现的数的个数,1或2个直接YES,3个以上直接NO,3个判断是否等差。
#include<bits/stdc++.h> using namespace std; int n,a[100005]; map<int,int> mp; int main() { ios::sync_with_stdio(false); cin >> n; int cnt = 0; for(int i = 1;i <= n;i++) { int x; cin >> x; if(!mp.count(x)) { cnt++; mp[x] = 1; a[cnt] = x; } } if(cnt == 1 || cnt == 2) cout << "YES" << endl; else if(cnt >= 4) cout << "NO" << endl; else { sort(a+1,a+4); if(a[1]+a[3] == 2*a[2]) cout << "YES" << endl; else cout << "NO" << endl; } return 0; }
C.把每一个数都转换成18位的pattern串,放进map处理。
#include<bits/stdc++.h> using namespace std; int n; map<string,int> mp; int main() { ios::sync_with_stdio(false); cin >> n; while(n--) { string s1,s2,s = ""; cin >> s1 >> s2; for(int i = s2.length()-1;i >= 0;i--) { if((s2[i]-'0')%2) s = "1"+s; else s = "0"+s; } while(s.length() < 18) s = "0"+s; if(s1 == "+") mp[s]++; else if(s1 == "-") mp[s]--; else cout << mp[s] << endl; } return 0; }
D.先把图分成左右或上下两块,然后二分每一块中矩形的四条边。
#include<bits/stdc++.h> using namespace std; int n; struct xx { long long x1,x2,y1,y2; void print() { cout << x1 << " " << y1 << " " << x2 << " " << y2 << " "; } }; int query(int x1,int y1,int x2,int y2) { if(x1 > x2)swap(x1,x2); if(y1 > y2)swap(y1,y2); cout<<"? "<<x1<<" "<<y1<<" "<<x2<<" "<<y2<<endl; int ans; cin>>ans; return ans; } xx f(int x1,int y1,int x2,int y2) { xx ans; long long l = x1,r = x2; while(l < r) { int mid = (l+r)/2; if(query(x1,y1,mid,y2) < 1) l = mid+1; else r = mid; } ans.x2 = l; l = x1,r = x2; while(l < r) { int mid = (l+r+1)/2; if(query(mid,y1,x2,y2) < 1) r = mid-1; else l = mid; } ans.x1 = l; l = y1,r = y2; while(l < r) { int mid = (l+r)/2; if(query(x1,y1,x2,mid) < 1) l = mid+1; else r = mid; } ans.y2 = l; l = y1,r = y2; while(l < r) { int mid = (l+r+1)/2; if(query(x1,mid,x2,y2) < 1) r = mid-1; else l = mid; } ans.y1 = l; return ans; } int main() { cin >> n; long long x1,y1,x2,y2,x3,y3,x4,y4; long long l = 1,r = n; while(l < r) { long long mid = (l+r)/2; if(query(1,1,mid,n) < 1) l = mid+1; else r = mid; } long long t = l; if(query(1,1,t,n) == 1 && query(t+1,1,n,n) == 1) { xx a = f(1,1,t,n),b = f(t+1,1,n,n); cout << "! "; a.print(); b.print(); cout << endl; return 0; } l = 1,r = n; while(l < r) { long long mid = (l+r)/2; if(query(1,1,n,mid) < 1) l = mid+1; else r = mid; } t = l; xx a = f(1,1,n,t),b = f(1,t+1,n,n); cout << "! "; a.print(); b.print(); cout << endl; return 0; }
E.如果是非严格单调递增该如何做,我们会发现每次调整,都是调整某个数字为原先数列中存在的数字,最后才是最优的,所以,我们设DP[i][j]表示前i个数字,最后一个数为原先数列排序后第j大的数字的最小代价,然后令a[i]=a[i]-i,把严格单调递增就转化为非严格单调递增。
#include<bits/stdc++.h> using namespace std; int n; long long a[3005],b[3005],dp[3005][3005]; int main() { cin >> n; for(int i = 1;i <= n;i++) { cin >> a[i]; a[i] -= i; b[i] = a[i]; } sort(b+1,b+1+n); for(int i = 1;i <= n;i++) { long long minn = dp[i-1][1]; for(int j = 1;j <= n;j++) { minn = min(minn,dp[i-1][j]); dp[i][j] = abs(a[i]-b[j])+minn; } } long long ans = dp[n][1]; for(int i = 1;i <= n;i++) ans = min(ans,dp[n][i]); cout << ans << endl; return 0; }
还有优先队列优化的。
#include<bits/stdc++.h> using namespace std; int n; priority_queue<long long> q; int main() { cin >> n; long long ans = 0; for(int i = 1;i <= n;i++) { long long x; cin >> x; x -= i; q.push(x); if(q.top() > x) { ans += q.top()-x; q.pop(); q.push(x); } } cout << ans << endl; return 0; }