zoukankan      html  css  js  c++  java
  • 《机器学习》周志华 习题答案3.3

    3.3 编程实现对率回归,并给出西瓜数据集3.0α上的结果。

    本题我就调用了sklearn的逻辑回归库来测试。

    #!/usr/bin/python
    # -*- coding:utf-8 -*-
    from sklearn import linear_model,datasets
    import numpy as np
    from  matplotlib import pyplot as plt
    file1 = open('c:quantwatermelon.csv','r')
    data = [line.strip('
    ').split(',') for line in file1]
    X = [[float(raw[-3]), float(raw[-2])] for raw in data[1:]]
    Y = [1 if raw[-1]=='xcaxc7' else 0 for raw in data[1:]]
    X = np.array(X)
    # import some data to play with
    h = .002  # step size in the mesh
    
    logreg = linear_model.LogisticRegression(C=1e5)
    
    # we create an instance of Neighbours Classifier and fit the data.
    logreg.fit(X, Y)
    
    # Plot the decision boundary. For that, we will assign a color to each
    # point in the mesh [x_min, m_max]x[y_min, y_max].
    x_min, x_max = X[:, 0].min() - .5, X[:, 0].max() + .5
    y_min, y_max = X[:, 1].min() - .5, X[:, 1].max() + .5
    xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))
    test = np.c_[xx.ravel(), yy.ravel()]
    #print test
    Z = logreg.predict(test)
    #print Z
    #np.c_() 连接多个数组为一个数组
    # Put the result into a color plot
    Z = Z.reshape(xx.shape)
    #print Z
    #plt.figure(1, figsize=(4, 3))
    plt.pcolormesh(xx, yy, Z, cmap=plt.cm.Paired)
    
    # Plot also the training points
    plt.scatter(X[:, 0], X[:, 1], c=Y, edgecolors='k', cmap=plt.cm.Paired)
    plt.xlabel('Density')
    plt.ylabel('Sugar rate')
    
    plt.xlim(xx.min(), xx.max())
    plt.ylim(yy.min(), yy.max())
    plt.xticks(())
    plt.yticks(())
    
    plt.show()

    结果如下:

    西瓜数据集如下:

    编号,色泽,根蒂,敲声,纹理,脐部,触感,密度,含糖率,好瓜
    1,青绿,蜷缩,浊响,清晰,凹陷,硬滑,0.697,0.46,是
    2,乌黑,蜷缩,沉闷,清晰,凹陷,硬滑,0.774,0.376,是
    3,乌黑,蜷缩,浊响,清晰,凹陷,硬滑,0.634,0.264,是
    4,青绿,蜷缩,沉闷,清晰,凹陷,硬滑,0.608,0.318,是
    5,浅白,蜷缩,浊响,清晰,凹陷,硬滑,0.556,0.215,是
    6,青绿,稍蜷,浊响,清晰,稍凹,软粘,0.403,0.237,是
    7,乌黑,稍蜷,浊响,稍糊,稍凹,软粘,0.481,0.149,是
    8,乌黑,稍蜷,浊响,清晰,稍凹,硬滑,0.437,0.211,是
    9,乌黑,稍蜷,沉闷,稍糊,稍凹,硬滑,0.666,0.091,否
    10,青绿,硬挺,清脆,清晰,平坦,软粘,0.243,0.267,否
    11,浅白,硬挺,清脆,模糊,平坦,硬滑,0.245,0.057,否
    12,浅白,蜷缩,浊响,模糊,平坦,软粘,0.343,0.099,否
    13,青绿,稍蜷,浊响,稍糊,凹陷,硬滑,0.639,0.161,否
    14,浅白,稍蜷,沉闷,稍糊,凹陷,硬滑,0.657,0.198,否
    15,乌黑,稍蜷,浊响,清晰,稍凹,软粘,0.36,0.37,否
    16,浅白,蜷缩,浊响,模糊,平坦,硬滑,0.593,0.042,否
    17,青绿,蜷缩,沉闷,稍糊,稍凹,硬滑,0.719,0.103,否
  • 相关阅读:
    jquery之empty()与remove()区别
    (四)快速排序
    (三)归并排序
    (二)希尔排序
    (一)冒泡排序、插入排序、选择排序
    四,JVM 自带工具之jvisualvm
    JAVA多线程之Volatiles
    JAVA多线程之线程池的使用
    CountDownLatch与CyclicBarrier的使用与区别
    乐观锁与悲观锁及其实现
  • 原文地址:https://www.cnblogs.com/zhusleep/p/5615874.html
Copyright © 2011-2022 走看看